Lower Sorbian - Wikilangs Models

Comprehensive Research Report & Full Ablation Study

This repository contains NLP models trained and evaluated by Wikilangs, specifically on Lower Sorbian Wikipedia data. We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings.

πŸ“‹ Repository Contents

Models & Assets

  • Tokenizers (8k, 16k, 32k, 64k)
  • N-gram models (2, 3, 4, 5-gram)
  • Markov chains (context of 1, 2, 3, 4 and 5)
  • Subword N-gram and Markov chains
  • Embeddings in various sizes and dimensions (aligned and unaligned)
  • Language Vocabulary
  • Language Statistics

Performance Dashboard

Analysis and Evaluation


1. Tokenizer Evaluation

Tokenizer Compression

Tokenizer Fertility

Tokenizer OOV

Total Tokens

Results

Vocab Size Compression Avg Token Len UNK Rate Total Tokens
8k 3.295x 3.30 0.1090% 314,655
16k 3.690x 3.69 0.1221% 280,957
32k 4.049x 4.05 0.1339% 256,086
64k 4.367x πŸ† 4.37 0.1445% 237,425

Tokenization Examples

Below are sample sentences tokenized with each vocabulary size:

Sample 1: Andrew Garfield (* 20. awgusta Los Angeles) jo amerikaΕ„ski grajaΕ•. Eksterne wΓ³tk...

Vocab Tokens Count
8k ▁andre w ▁gar fi el d ▁(* ▁ 2 0 ... (+12 more) 22
16k ▁andre w ▁gar fi eld ▁(* ▁ 2 0 . ... (+11 more) 21
32k ▁andrew ▁gar field ▁(* ▁ 2 0 . ▁awgusta ▁los ... (+9 more) 19
64k ▁andrew ▁garfield ▁(* ▁ 2 0 . ▁awgusta ▁los ▁angeles ... (+8 more) 18

Sample 2: Pabianice jo mΔ›sto w PΓ³lskej, w Ε‚Γ³dΕΊskem wΓ³jwodstwje, we wokrejsu Pabianice. W l...

Vocab Tokens Count
8k ▁pa bia nice ▁jo ▁mΔ›sto ▁w ▁pΓ³lskej , ▁w ▁łódΕΊskem ... (+26 more) 36
16k ▁pa bia nice ▁jo ▁mΔ›sto ▁w ▁pΓ³lskej , ▁w ▁łódΕΊskem ... (+26 more) 36
32k ▁pabianice ▁jo ▁mΔ›sto ▁w ▁pΓ³lskej , ▁w ▁łódΕΊskem ▁wΓ³jwodstwje , ... (+22 more) 32
64k ▁pabianice ▁jo ▁mΔ›sto ▁w ▁pΓ³lskej , ▁w ▁łódΕΊskem ▁wΓ³jwodstwje , ... (+22 more) 32

Sample 3: Ε»ukowo (kaΕ‘. Ε»ukΓ²wΓ², nim. Zuckau) jo mΔ›sto w PΓ³lskej, kΓ³tareΕΎ laΕΎy w pomorskem w...

Vocab Tokens Count
8k ▁ż u kowo ▁( kaΕ‘ . ▁ż uk Γ² w ... (+22 more) 32
16k ▁ż u kowo ▁( kaΕ‘ . ▁ż uk Γ² w ... (+22 more) 32
32k ▁żukowo ▁( kaΕ‘ . ▁ż ukΓ²wΓ² , ▁nim . ▁zu ... (+17 more) 27
64k ▁żukowo ▁( kaΕ‘ . ▁żukΓ²wΓ² , ▁nim . ▁zu ckau ... (+16 more) 26

Key Findings

  • Best Compression: 64k achieves 4.367x compression
  • Lowest UNK Rate: 8k with 0.1090% unknown tokens
  • Trade-off: Larger vocabularies improve compression but increase model size
  • Recommendation: 32k vocabulary provides optimal balance for production use

2. N-gram Model Evaluation

N-gram Perplexity

N-gram Unique

N-gram Coverage

Results

N-gram Variant Perplexity Entropy Unique N-grams Top-100 Coverage Top-1000 Coverage
2-gram Word 4,470 12.13 8,572 17.8% 48.2%
2-gram Subword 446 πŸ† 8.80 3,440 54.0% 97.7%
3-gram Word 5,728 12.48 9,797 15.0% 41.9%
3-gram Subword 4,110 12.01 24,943 18.0% 57.3%
4-gram Word 10,398 13.34 16,574 10.9% 31.5%
4-gram Subword 21,363 14.38 109,172 8.1% 29.6%
5-gram Word 7,815 12.93 11,757 11.1% 34.9%
5-gram Subword 57,069 15.80 221,040 5.0% 20.1%

Top 5 N-grams by Size

2-grams (Word):

Rank N-gram Count
1 aΕΎ do 933
2 w lΔ›Ε›e 890
3 jo byΕ‚ 874
4 jo se 751
5 w pΓ³lskej 720

3-grams (Word):

Rank N-gram Count
1 jo mΔ›sto w 444
2 w lΔ›Ε›e jo 408
3 w pΓ³lskej w 301
4 jo how bydliΕ‚o 290
5 mΔ›sto w pΓ³lskej 280

4-grams (Word):

Rank N-gram Count
1 jo mΔ›sto w pΓ³lskej 278
2 lΔ›Ε›e jo how bydliΕ‚o 271
3 w lΔ›Ε›e jo how 271
4 mΔ›sto w pΓ³lskej w 265
5 luΕΊi galerija w pΓ³lskej 195

5-grams (Word):

Rank N-gram Count
1 w lΔ›Ε›e jo how bydliΕ‚o 271
2 jo mΔ›sto w pΓ³lskej w 264
3 oslwokrejs gΓ³rne bΕ‚ota Ε‚uΕΎyca bramborska 123
4 spohn was blΓΌht denn da 92
5 bechtle spohn was blΓΌht denn 92

2-grams (Subword):

Rank N-gram Count
1 a _ 64,101
2 e _ 45,814
3 _ w 44,765
4 _ s 35,936
5 o _ 35,677

3-grams (Subword):

Rank N-gram Count
1 j o _ 13,646
2 _ j o 12,615
3 _ a _ 11,980
4 n a _ 11,930
5 s k e 11,746

4-grams (Subword):

Rank N-gram Count
1 _ j o _ 11,352
2 s k i _ 7,449
3 s k e j 6,203
4 _ w Γ³ t 6,170
5 s k a _ 4,852

5-grams (Subword):

Rank N-gram Count
1 _ w Γ³ t _ 3,402
2 s e r b s 3,221
3 e r b s k 3,202
4 _ s e r b 2,762
5 a _ j o _ 2,563

Key Findings

  • Best Perplexity: 2-gram (subword) with 446
  • Entropy Trend: Decreases with larger n-grams (more predictable)
  • Coverage: Top-1000 patterns cover ~20% of corpus
  • Recommendation: 4-gram or 5-gram for best predictive performance

3. Markov Chain Evaluation

Markov Entropy

Markov Contexts

Markov Branching

Results

Context Variant Avg Entropy Perplexity Branching Factor Unique Contexts Predictability
1 Word 0.6397 1.558 3.41 79,306 36.0%
1 Subword 1.0660 2.094 8.70 993 0.0%
2 Word 0.1672 1.123 1.33 269,674 83.3%
2 Subword 0.9899 1.986 5.80 8,629 1.0%
3 Word 0.0539 1.038 1.08 355,887 94.6%
3 Subword 0.8277 1.775 3.86 50,014 17.2%
4 Word 0.0234 πŸ† 1.016 1.03 383,185 97.7%
4 Subword 0.6176 1.534 2.51 193,064 38.2%

Generated Text Samples (Word-based)

Below are text samples generated from each word-based Markov chain model:

Context Size 1:

  1. a hiri sΕ‚owo jo byΕ‚ historiski region region region iv december dartford engelska 6 kulojte aΕΎ
  2. w pomorskem wΓ³jewΓ³dstwje we chicago homepage lfn english creoles spoken in 3 349 300 ΕΊiΕ›i ze
  3. jo jano 13 v werner mΔ›Ε‘kank serbski sΕ‚ownik za literaturu w pΓ³lskej w prien am nordrand

Context Size 2:

  1. aΕΎ do drjowku w lΔ›Ε›e jo how bydliΕ‚o 2 467 luΕΊi galerija w pΓ³lskej w kujawsko pomorskem
  2. w lΔ›Ε›e wΓ³na jo byΕ‚a hanka krawcec cΕ‚onkojstwo domowinje pΕ›isΕ‚uΕ‘aju slΔ›dujuce towaristwa ΕΎupy budyΕ‘yn...
  3. jo byΕ‚ dolnoΕ‚uΕΎyska wjas pla chΓ³Ε›ebuza wΓ³t lΔ›ta pΕ›ecej na pjerwjejΕ‘nych systemach by mΓ³gΕ‚o se snaΕΊ d...

Context Size 3:

  1. jo mΔ›sto w pΓ³lskej w podkarpatskem wΓ³jwodstwje we wokrejsu cheΕ‚mno w lΔ›Ε›e jo how bydliΕ‚o 57 458 luΕΊi
  2. w lΔ›Ε›e jo w sankt petersburgu jo byΕ‚ jaden z nejwuznamnjejΕ‘ych zastupnikow tak pomjenjonego bergaΕ•sk...
  3. w pΓ³lskej w kujawsko pomorskem wΓ³jwodstwje we wokrejsu leΕΌajsk w lΔ›Ε›e jo how bydliΕ‚o 127 602 luΕΊi ek...

Context Size 4:

  1. jo mΔ›sto w pΓ³lskej w lubliΕ„skem wΓ³jwodstwje we wokrejsu hrubieszΓ³w w lΔ›Ε›e jo how bydliΕ‚o 13 766 luΕΊi...
  2. lěśe jo how bydliło 65 149 luźi historiski centrum jo na lisćinje unesco mě w drugich rěcach vilnius...
  3. w lΔ›Ε›e jo how bydliΕ‚o 3 223 luΕΊi galerija eksterne wΓ³tkaze biaΕ‚a rawska pΓ³l biaΕ‚a rawska pΓ³l w pΓ³lsk...

Generated Text Samples (Subword-based)

Below are text samples generated from each subword-based Markov chain model:

Context Size 1:

  1. _zojejost_Ε‚nja_s
  2. aropynderoveiin.
  3. epruroni_dpekaru

Context Size 2:

  1. a_kΓ³tka_ΕΊiw_mil_w
  2. e_da_kuchΓ³rbski_t
  3. _w_sertika_wu_re_

Context Size 3:

  1. jo_spis_krΔ›pojcne_
  2. _jo_septemata_kral
  3. _a_wΓ³tΕ‘y_pΕ›eder_wi

Context Size 4:

  1. _jo_kupki_spisowaΕ›e
  2. ski_casom_stiftung_
  3. _wΓ³twezeΕ‚._pΔ›Ε›_ΕΎoΕ‚t

Key Findings

  • Best Predictability: Context-4 (word) with 97.7% predictability
  • Branching Factor: Decreases with context size (more deterministic)
  • Memory Trade-off: Larger contexts require more storage (193,064 contexts)
  • Recommendation: Context-3 or Context-4 for text generation

4. Vocabulary Analysis

Zipf's Law

Top Words

Coverage Curve

Statistics

Metric Value
Vocabulary Size 31,116
Total Tokens 390,195
Mean Frequency 12.54
Median Frequency 3
Frequency Std Dev 136.48

Most Common Words

Rank Word Frequency
1 a 12,373
2 w 12,119
3 jo 11,480
4 na 4,655
5 z 4,220
6 se 3,637
7 wΓ³t 3,522
8 su 2,923
9 do 2,438
10 za 1,989

Least Common Words (from vocabulary)

Rank Word Frequency
1 wikowje 2
2 kΕ‘ace 2
3 gotowaΕ‚ 2
4 moderΔ›rowaΕ‚ 2
5 procowarjow 2
6 zachdniego 2
7 gdanskiego 2
8 podzially 2
9 ujazd 2
10 mojΕ‘ 2

Zipf's Law Analysis

Metric Value
Zipf Coefficient 0.9483
RΒ² (Goodness of Fit) 0.996724
Adherence Quality excellent

Coverage Analysis

Top N Words Coverage
Top 100 30.7%
Top 1,000 56.8%
Top 5,000 76.7%
Top 10,000 85.6%

Key Findings

  • Zipf Compliance: RΒ²=0.9967 indicates excellent adherence to Zipf's law
  • High Frequency Dominance: Top 100 words cover 30.7% of corpus
  • Long Tail: 21,116 words needed for remaining 14.4% coverage

5. Word Embeddings Evaluation

Embedding Isotropy

Similarity Matrix

t-SNE Words

t-SNE Sentences

5.1 Cross-Lingual Alignment

Alignment Quality

Multilingual t-SNE

5.2 Model Comparison

Model Dimension Isotropy Semantic Density Alignment R@1 Alignment R@10
mono_32d 32 0.8231 πŸ† 0.3397 N/A N/A
mono_64d 64 0.5887 0.3131 N/A N/A
mono_128d 128 0.1790 0.3018 N/A N/A
aligned_32d 32 0.8231 0.3455 0.0460 0.2420
aligned_64d 64 0.5887 0.3066 0.0660 0.3060
aligned_128d 128 0.1790 0.3019 0.0860 0.3460

Key Findings

  • Best Isotropy: mono_32d with 0.8231 (more uniform distribution)
  • Semantic Density: Average pairwise similarity of 0.3181. Lower values indicate better semantic separation.
  • Alignment Quality: Aligned models achieve up to 8.6% R@1 in cross-lingual retrieval.
  • Recommendation: 128d aligned for best cross-lingual performance

6. Morphological Analysis (Experimental)

This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data.

6.1 Productivity & Complexity

Metric Value Interpretation Recommendation
Productivity Index 5.000 High morphological productivity Reliable analysis
Idiomaticity Gap 0.741 High formulaic/idiomatic content -

6.2 Affix Inventory (Productive Units)

These are the most productive prefixes and suffixes identified by sampling the vocabulary for global substitutability patterns. A unit is considered an affix if stripping it leaves a valid stem that appears in other contexts.

Productive Prefixes

Prefix Examples

Productive Suffixes

Suffix Examples
-a trilogija, rinetta, kenija
-e galiΕ‘Δ‡inje, evidence, hercegowinje
-je galiΕ‘Δ‡inje, hercegowinje, wΓ³tstoje
-ch reichenbach, proch, ΕΎurnalistiskich
-ka hypotetiska, francoska, wΔ›rika
-ki monotypiski, wΓ³lΕ‘ynki, keltiski
-ow dokusow, wunjow, basnikow
-nje galiΕ‘Δ‡inje, hercegowinje, wΓ³tchylenje

6.3 Bound Stems (Lexical Roots)

Bound stems are high-frequency subword units that are semantically cohesive but rarely appear as standalone words. These often correspond to the 'core' of a word that requires inflection or derivation to be valid.

Stem Cohesion Substitutability Examples
Ε‘Δ‡in 1.95x 41 contexts čeΕ‘Δ‡inu, čeΕ‘Δ‡ina, čeΕ‘Δ‡iny
jenj 1.71x 62 contexts jenje, mjenju, mjenja
Γ³tar 2.17x 19 contexts kΓ³tara, kΓ³taru, kΓ³tare
skej 1.53x 56 contexts českej, wuskej, irskej
mΔ›st 1.87x 25 contexts mΔ›sty, mΔ›sta, mΔ›sto
rbsk 1.95x 17 contexts srbskΓ‘, serbsku, serbsko
owan 1.70x 26 contexts gΕ‚owan, cowanje, ΕΊΔ›kowano
kΓ³ta 2.17x 12 contexts kΓ³tara, kΓ³taru, kΓ³tare
iski 1.63x 25 contexts niski, bliski, leniski
iske 1.46x 36 contexts niske, aziske, bliske
erbs 1.90x 14 contexts herbst, serbsku, serbsko
imsk 1.72x 16 contexts nimska, nimsko, nimske

6.4 Affix Compatibility (Co-occurrence)

This table shows which prefixes and suffixes most frequently co-occur on the same stems, revealing the 'stacking' rules of the language's morphology.

No significant affix co-occurrences detected.

6.5 Recursive Morpheme Segmentation

Using Recursive Hierarchical Substitutability, we decompose complex words into their constituent morphemes. This approach handles nested affixes (e.g., prefix-prefix-root-suffix).

Word Suggested Split Confidence Stem
wΓ³znamjenjenje wΓ³znam-je-nje-nje 7.5 wΓ³znam
biologowka biolog-ow-ka 6.0 biolog
pósćonych pósćony-ch 4.5 pósćony
wΓ³tstojecych wΓ³tstojecy-ch 4.5 wΓ³tstojecy
pomorskeje pomorske-je 4.5 pomorske
halΕ‘terje halΕ‘ter-je 4.5 halΕ‘ter
nejlΔ›pΕ‘ych nejlΔ›pΕ‘y-ch 4.5 nejlΔ›pΕ‘y
kamjentnych kamjentny-ch 4.5 kamjentny
pΓ³dpoΕ‚nocnje pΓ³dpoΕ‚noc-nje 4.5 pΓ³dpoΕ‚noc
spominanje spomina-nje 4.5 spomina
pΓ³dwjacorneje pΓ³dwjacorne-je 4.5 pΓ³dwjacorne
organiskeje organiske-je 4.5 organiske
wΓ³tpΓ³sΕ‚aΕ„cka wΓ³tpΓ³sΕ‚aΕ„c-ka 4.5 wΓ³tpΓ³sΕ‚aΕ„c
chinskeje chinske-je 4.5 chinske
twarjenjach twarjenja-ch 4.5 twarjenja

6.6 Linguistic Interpretation

Automated Insight: The language Lower Sorbian shows high morphological productivity. The subword models are significantly more efficient than word models, suggesting a rich system of affixation or compounding.

Note on Idiomaticity: The high Idiomaticity Gap suggests a large number of frequent multi-word expressions or formulaic sequences that are statistically distinct from their component parts.


7. Summary & Recommendations

Performance Dashboard

Production Recommendations

Component Recommended Rationale
Tokenizer 64k BPE Best compression (4.37x)
N-gram 2-gram Lowest perplexity (446)
Markov Context-4 Highest predictability (97.7%)
Embeddings 100d Balanced semantic capture and isotropy

Appendix: Metrics Glossary & Interpretation Guide

This section provides definitions, intuitions, and guidance for interpreting the metrics used throughout this report.

Tokenizer Metrics

Compression Ratio

Definition: The ratio of characters to tokens (chars/token). Measures how efficiently the tokenizer represents text.

Intuition: Higher compression means fewer tokens needed to represent the same text, reducing sequence lengths for downstream models. A 3x compression means ~3 characters per token on average.

What to seek: Higher is generally better for efficiency, but extremely high compression may indicate overly aggressive merging that loses morphological information.

Average Token Length (Fertility)

Definition: Mean number of characters per token produced by the tokenizer.

Intuition: Reflects the granularity of tokenization. Longer tokens capture more context but may struggle with rare words; shorter tokens are more flexible but increase sequence length.

What to seek: Balance between 2-5 characters for most languages. Arabic/morphologically-rich languages may benefit from slightly longer tokens.

Unknown Token Rate (OOV Rate)

Definition: Percentage of tokens that map to the unknown/UNK token, indicating words the tokenizer cannot represent.

Intuition: Lower OOV means better vocabulary coverage. High OOV indicates the tokenizer encounters many unseen character sequences.

What to seek: Below 1% is excellent; below 5% is acceptable. BPE tokenizers typically achieve very low OOV due to subword fallback.

N-gram Model Metrics

Perplexity

Definition: Measures how "surprised" the model is by test data. Mathematically: 2^(cross-entropy). Lower values indicate better prediction.

Intuition: If perplexity is 100, the model is as uncertain as if choosing uniformly among 100 options at each step. A perplexity of 10 means effectively choosing among 10 equally likely options.

What to seek: Lower is better. Perplexity decreases with larger n-grams (more context). Values vary widely by language and corpus size.

Entropy

Definition: Average information content (in bits) needed to encode the next token given the context. Related to perplexity: perplexity = 2^entropy.

Intuition: High entropy means high uncertainty/randomness; low entropy means predictable patterns. Natural language typically has entropy between 1-4 bits per character.

What to seek: Lower entropy indicates more predictable text patterns. Entropy should decrease as n-gram size increases.

Coverage (Top-K)

Definition: Percentage of corpus occurrences explained by the top K most frequent n-grams.

Intuition: High coverage with few patterns indicates repetitive/formulaic text; low coverage suggests diverse vocabulary usage.

What to seek: Depends on use case. For language modeling, moderate coverage (40-60% with top-1000) is typical for natural text.

Markov Chain Metrics

Average Entropy

Definition: Mean entropy across all contexts, measuring average uncertainty in next-word prediction.

Intuition: Lower entropy means the model is more confident about what comes next. Context-1 has high entropy (many possible next words); Context-4 has low entropy (few likely continuations).

What to seek: Decreasing entropy with larger context sizes. Very low entropy (<0.1) indicates highly deterministic transitions.

Branching Factor

Definition: Average number of unique next tokens observed for each context.

Intuition: High branching = many possible continuations (flexible but uncertain); low branching = few options (predictable but potentially repetitive).

What to seek: Branching factor should decrease with context size. Values near 1.0 indicate nearly deterministic chains.

Predictability

Definition: Derived metric: (1 - normalized_entropy) Γ— 100%. Indicates how deterministic the model's predictions are.

Intuition: 100% predictability means the next word is always certain; 0% means completely random. Real text falls between these extremes.

What to seek: Higher predictability for text generation quality, but too high (>98%) may produce repetitive output.

Vocabulary & Zipf's Law Metrics

Zipf's Coefficient

Definition: The slope of the log-log plot of word frequency vs. rank. Zipf's law predicts this should be approximately -1.

Intuition: A coefficient near -1 indicates the corpus follows natural language patterns where a few words are very common and most words are rare.

What to seek: Values between -0.8 and -1.2 indicate healthy natural language distribution. Deviations may suggest domain-specific or artificial text.

RΒ² (Coefficient of Determination)

Definition: Measures how well the linear fit explains the frequency-rank relationship. Ranges from 0 to 1.

Intuition: RΒ² near 1.0 means the data closely follows Zipf's law; lower values indicate deviation from expected word frequency patterns.

What to seek: RΒ² > 0.95 is excellent; > 0.99 indicates near-perfect Zipf adherence typical of large natural corpora.

Vocabulary Coverage

Definition: Cumulative percentage of corpus tokens accounted for by the top N words.

Intuition: Shows how concentrated word usage is. If top-100 words cover 50% of text, the corpus relies heavily on common words.

What to seek: Top-100 covering 30-50% is typical. Higher coverage indicates more repetitive text; lower suggests richer vocabulary.

Word Embedding Metrics

Isotropy

Definition: Measures how uniformly distributed vectors are in the embedding space. Computed as the ratio of minimum to maximum singular values.

Intuition: High isotropy (near 1.0) means vectors spread evenly in all directions; low isotropy means vectors cluster in certain directions, reducing expressiveness.

What to seek: Higher isotropy generally indicates better-quality embeddings. Values > 0.1 are reasonable; > 0.3 is good. Lower-dimensional embeddings tend to have higher isotropy.

Average Norm

Definition: Mean magnitude (L2 norm) of word vectors in the embedding space.

Intuition: Indicates the typical "length" of vectors. Consistent norms suggest stable training; high variance may indicate some words are undertrained.

What to seek: Relatively consistent norms across models. The absolute value matters less than consistency (low std deviation).

Cosine Similarity

Definition: Measures angular similarity between vectors, ranging from -1 (opposite) to 1 (identical direction).

Intuition: Words with similar meanings should have high cosine similarity. This is the standard metric for semantic relatedness in embeddings.

What to seek: Semantically related words should score > 0.5; unrelated words should be near 0. Synonyms often score > 0.7.

t-SNE Visualization

Definition: t-Distributed Stochastic Neighbor Embedding - a dimensionality reduction technique that preserves local structure for visualization.

Intuition: Clusters in t-SNE plots indicate groups of semantically related words. Spread indicates vocabulary diversity; tight clusters suggest semantic coherence.

What to seek: Meaningful clusters (e.g., numbers together, verbs together). Avoid over-interpreting distances - t-SNE preserves local, not global, structure.

General Interpretation Guidelines

  1. Compare within model families: Metrics are most meaningful when comparing models of the same type (e.g., 8k vs 64k tokenizer).
  2. Consider trade-offs: Better performance on one metric often comes at the cost of another (e.g., compression vs. OOV rate).
  3. Context matters: Optimal values depend on downstream tasks. Text generation may prioritize different metrics than classification.
  4. Corpus influence: All metrics are influenced by corpus characteristics. Wikipedia text differs from social media or literature.
  5. Language-specific patterns: Morphologically rich languages (like Arabic) may show different optimal ranges than analytic languages.

Visualizations Index

Visualization Description
Tokenizer Compression Compression ratios by vocabulary size
Tokenizer Fertility Average token length by vocabulary
Tokenizer OOV Unknown token rates
Tokenizer Total Tokens Total tokens by vocabulary
N-gram Perplexity Perplexity by n-gram size
N-gram Entropy Entropy by n-gram size
N-gram Coverage Top pattern coverage
N-gram Unique Unique n-gram counts
Markov Entropy Entropy by context size
Markov Branching Branching factor by context
Markov Contexts Unique context counts
Zipf's Law Frequency-rank distribution with fit
Vocab Frequency Word frequency distribution
Top 20 Words Most frequent words
Vocab Coverage Cumulative coverage curve
Embedding Isotropy Vector space uniformity
Embedding Norms Vector magnitude distribution
Embedding Similarity Word similarity heatmap
Nearest Neighbors Similar words for key terms
t-SNE Words 2D word embedding visualization
t-SNE Sentences 2D sentence embedding visualization
Position Encoding Encoding method comparison
Model Sizes Storage requirements
Performance Dashboard Comprehensive performance overview

About This Project

Data Source

Models trained on wikipedia-monthly - a monthly snapshot of Wikipedia articles across 300+ languages.

Project

A project by Wikilangs - Open-source NLP models for every Wikipedia language.

Maintainer

Omar Kamali - Omneity Labs

Citation

If you use these models in your research, please cite:

@misc{wikilangs2025,
  author = {Kamali, Omar},
  title = {Wikilangs: Open NLP Models for Wikipedia Languages},
  year = {2025},
  doi = {10.5281/zenodo.18073153},
  publisher = {Zenodo},
  url = {https://huggingface.co/wikilangs}
  institution = {Omneity Labs}
}

License

MIT License - Free for academic and commercial use.

Links


Generated by Wikilangs Models Pipeline

Report Date: 2026-01-04 02:35:27

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Dataset used to train wikilangs/dsb