Church Slavic - Wikilangs Models

Comprehensive Research Report & Full Ablation Study

This repository contains NLP models trained and evaluated by Wikilangs, specifically on Church Slavic Wikipedia data. We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings.

📋 Repository Contents

Models & Assets

  • Tokenizers (8k, 16k, 32k, 64k)
  • N-gram models (2, 3, 4, 5-gram)
  • Markov chains (context of 1, 2, 3, 4 and 5)
  • Subword N-gram and Markov chains
  • Embeddings in various sizes and dimensions (aligned and unaligned)
  • Language Vocabulary
  • Language Statistics

Performance Dashboard

Analysis and Evaluation


1. Tokenizer Evaluation

Tokenizer Compression

Tokenizer Fertility

Tokenizer OOV

Total Tokens

Results

Vocab Size Compression Avg Token Len UNK Rate Total Tokens
8k 3.877x 3.88 0.1314% 107,273
16k 4.367x 4.37 0.1480% 95,246
32k 4.940x 🏆 4.94 0.1675% 84,200

Tokenization Examples

Below are sample sentences tokenized with each vocabulary size:

Sample 1: Лидьскъ повѣтъ · Бѣла Роусь Лидьскъ повѣтъ · Рѡсїиска їмпєрїꙗ

Vocab Tokens Count
8k ▁лидьскъ ▁повѣтъ ▁· ▁бѣла ▁роусь ▁лидьскъ ▁повѣтъ ▁· ▁рѡсїиска ▁їмпєрїꙗ 10
16k ▁лидьскъ ▁повѣтъ ▁· ▁бѣла ▁роусь ▁лидьскъ ▁повѣтъ ▁· ▁рѡсїиска ▁їмпєрїꙗ 10
32k ▁лидьскъ ▁повѣтъ ▁· ▁бѣла ▁роусь ▁лидьскъ ▁повѣтъ ▁· ▁рѡсїиска ▁їмпєрїꙗ 10

Sample 2: Оꙁаскоу и · юга Санъ Паоулоу браꙁїльскъ градъ и обьщина ѥстъ ⁙ Людии 718.646 оби...

Vocab Tokens Count
8k ▁о ꙁа скоу ▁и ▁· ▁ю га ▁санъ ▁паоу лоу ... (+24 more) 34
16k ▁о ꙁа скоу ▁и ▁· ▁ю га ▁санъ ▁паоулоу ▁браꙁїл ... (+23 more) 33
32k ▁оꙁаскоу ▁и ▁· ▁юга ▁санъ ▁паоулоу ▁браꙁїльскъ ▁градъ ▁и ▁обьщина ... (+19 more) 29

Sample 3: Октадєканъ и инако н-октадєканъ ѫглѥводородьно вєщьство алканъ рѧдоу ѥстъ ⁙ Ѥгож...

Vocab Tokens Count
8k ▁ок тадєканъ ▁и ▁инако ▁н - ок тадєканъ ▁ѫглѥводородьно ▁вєщьство ... (+19 more) 29
16k ▁октадєканъ ▁и ▁инако ▁н - ок тадєканъ ▁ѫглѥводородьно ▁вєщьство ▁алканъ ... (+17 more) 27
32k ▁октадєканъ ▁и ▁инако ▁н - октадєканъ ▁ѫглѥводородьно ▁вєщьство ▁алканъ ▁рѧдоу ... (+16 more) 26

Key Findings

  • Best Compression: 32k achieves 4.940x compression
  • Lowest UNK Rate: 8k with 0.1314% unknown tokens
  • Trade-off: Larger vocabularies improve compression but increase model size
  • Recommendation: 32k vocabulary provides optimal balance for production use

2. N-gram Model Evaluation

N-gram Perplexity

N-gram Unique

N-gram Coverage

Results

N-gram Variant Perplexity Entropy Unique N-grams Top-100 Coverage Top-1000 Coverage
2-gram Word 802 9.65 1,417 38.7% 88.9%
2-gram Subword 451 🏆 8.82 2,622 56.3% 95.5%
3-gram Word 965 9.91 1,734 35.4% 82.3%
3-gram Subword 2,629 11.36 12,286 25.7% 67.4%
4-gram Word 1,583 10.63 2,960 29.4% 67.1%
4-gram Subword 8,218 13.00 33,187 16.1% 45.2%
5-gram Word 1,176 10.20 2,224 32.9% 74.0%
5-gram Subword 14,289 13.80 46,031 12.7% 35.8%

Top 5 N-grams by Size

2-grams (Word):

Rank N-gram Count
1 ꙁьри такождє 432
2 людии обитаѥтъ 260
3 ѥстъ людии 234
4 градъ ѥстъ 230
5 стольнъ градъ 186

3-grams (Word):

Rank N-gram Count
1 ѥстъ людии обитаѥтъ 181
2 дрьжавѣ бѣла роусь 120
3 въ дрьжавѣ бѣла 120
4 градъ ѥстъ людии 115
5 бѣла роусь сѣи 114

4-grams (Word):

Rank N-gram Count
1 въ дрьжавѣ бѣла роусь 120
2 дрьжавѣ бѣла роусь сѣи 114
3 оудѣлъ въ дрьжавѣ бѣла 114
4 ꙁємьскъ оудѣлъ въ дрьжавѣ 114
5 бѣла роусь сѣи оудѣлъ 114

5-grams (Word):

Rank N-gram Count
1 роусь сѣи оудѣлъ бѣ члѣнъ 114
2 ꙁємьскъ оудѣлъ въ дрьжавѣ бѣла 114
3 оудѣлъ въ дрьжавѣ бѣла роусь 114
4 бѣла роусь сѣи оудѣлъ бѣ 114
5 дрьжавѣ бѣла роусь сѣи оудѣлъ 114

2-grams (Subword):

Rank N-gram Count
1 ъ _ 17,697
2 и _ 9,192
3 а _ 8,589
4 с т 8,369
5 _ с 6,568

3-grams (Subword):

Rank N-gram Count
1 т ъ _ 5,939
2 _ · _ 4,413
3 ь с к 3,883
4 _ ⁙ _ 3,094
5 с т ъ 3,038

4-grams (Subword):

Rank N-gram Count
1 _ ѥ с т 2,895
2 с т ъ _ 2,876
3 ѥ с т ъ 2,698
4 ъ _ ⁙ _ 1,902
5 т ъ _ ⁙ 1,813

5-grams (Subword):

Rank N-gram Count
1 _ ѥ с т ъ 2,695
2 ѥ с т ъ _ 2,559
3 т ъ _ ⁙ _ 1,796
4 _ г р а д 1,425
5 с т ъ _ ⁙ 1,340

Key Findings

  • Best Perplexity: 2-gram (subword) with 451
  • Entropy Trend: Decreases with larger n-grams (more predictable)
  • Coverage: Top-1000 patterns cover ~36% of corpus
  • Recommendation: 4-gram or 5-gram for best predictive performance

3. Markov Chain Evaluation

Markov Entropy

Markov Contexts

Markov Branching

Results

Context Variant Avg Entropy Perplexity Branching Factor Unique Contexts Predictability
1 Word 0.4863 1.401 2.62 18,746 51.4%
1 Subword 0.9940 1.992 7.09 1,077 0.6%
2 Word 0.1229 1.089 1.22 48,473 87.7%
2 Subword 0.8201 1.766 4.18 7,633 18.0%
3 Word 0.0444 1.031 1.07 58,365 95.6%
3 Subword 0.5514 1.466 2.43 31,900 44.9%
4 Word 0.0207 🏆 1.014 1.03 61,255 97.9%
4 Subword 0.3387 1.265 1.70 77,420 66.1%

Generated Text Samples (Word-based)

Below are text samples generated from each word-based Markov chain model:

Context Size 1:

  1. и ꙁападьнꙑ дъвинꙑ роуси пьсаниꙗ алєѯандра данїиловища свѣтьлѣиша кънѧꙃа владєнию бѣ съ словѣньскомь ...
  2. ѥстъ стольнъ градъ ѥстъ нѣмьцкомь єпископомь албєртомь а нꙑнѣ жє носьнꙑи приꙁвѫкъ нє ꙁнаашє ѥдьнъ ис
  3. лѣта їмпєратѡръ ѥстъ пєроунъ сварогъ ѩꙁꙑчьство

Context Size 2:

  1. ꙁьри такождє обитѣльско напьсаниѥ владиславъ їѡаннъ асєн҄ь а҃ и блъгарїꙗ цѣсарь бѣ їѡанна асєнꙗ а҃ с...
  2. людии обитаѥтъ 6 9 лєѡ́дръ їсторїꙗ лѣта по нѣмьць ѥдьнѥниꙗ бєрлинъ пакꙑ сталъ ѥстъ ꙁьри такъждє брюѯ...
  3. ѥстъ людии 2 лєѡдръ обитаѥтъ пакистана дрьжавьнъ ѩꙁꙑкъ тѷрчьскъ ѥстъ їсторїꙗ дѣлꙗ охранꙑ съдравиꙗ лѣ...

Context Size 3:

  1. ѥстъ людии обитаѥтъ 398 и иꙁъ ихъжє мѫжь 175 и жєнъ 223 наибол҄ии числомь народъ роусьсци ѥстъ 99
  2. въ дрьжавѣ бѣла роусь сѣи оудѣлъ бѣ члѣнъ ѡбласти рѣкома могилєвьска ѡбласть повѣтъ имаѥтъ оурѧдъ рѣ...
  3. дрьжавѣ бѣла роусь сѣи оудѣлъ бѣ члѣнъ градоу витьбьскъ въ ѡбласти рѣкома мѣньска ѡбласть повѣтъ има...

Context Size 4:

  1. въ дрьжавѣ бѣла роусь сѣи оудѣлъ бѣ члѣнъ ѡбласти рѣкома бєрєстєиска ѡбласть повѣтъ имаѥтъ оурѧдъ рѣ...
  2. роусь сѣи оудѣлъ бѣ члѣнъ ѡбласти рѣкома мѣньска ѡбласть повѣтъ имаѥтъ оурѧдъ рѣкомъ сєльскъ съвѣтъ ...
  3. бѣла роусь сѣи оудѣлъ бѣ члѣнъ ѡбласти рѣкома витєбьска ѡбласть повѣтъ имаѥтъ оурѧдъ рѣкомъ сєльскъ ...

Generated Text Samples (Subword-based)

Below are text samples generated from each subword-based Markov chain model:

Context Size 1:

  1. _иното_ѥгонокꙑ_ѥ
  2. а_одаскꙑ_сточлѣс
  3. орлѩꙁа_гокє_ꙁꙑ_с

Context Size 2:

  1. ъ_обирѡсьскꙑ_рѣвь
  2. и_•_всєли_·_рѡпьс
  3. а_посладъпрꙗѥтъ_ꙁ

Context Size 3:

  1. тъ_⁙_глаголєптємпє
  2. _·_дѣлъ_бѣлороусло
  3. ьскъ_прьвовец_гора

Context Size 4:

  1. _ѥстъ_·_мїхаилъ_хоу
  2. стъ_словєниꙗ_мѫжь_с
  3. ѥстъ_⁙_глагоданьска

Key Findings

  • Best Predictability: Context-4 (word) with 97.9% predictability
  • Branching Factor: Decreases with context size (more deterministic)
  • Memory Trade-off: Larger contexts require more storage (77,420 contexts)
  • Recommendation: Context-3 or Context-4 for text generation

4. Vocabulary Analysis

Zipf's Law

Top Words

Coverage Curve

Statistics

Metric Value
Vocabulary Size 6,189
Total Tokens 62,865
Mean Frequency 10.16
Median Frequency 3
Frequency Std Dev 60.08

Most Common Words

Rank Word Frequency
1 и 2,821
2 ѥстъ 2,694
3 лѣта 952
4 бѣ 910
5 въ 842
6 градъ 792
7 ꙁьри 536
8 такождє 533
9 жє 512
10 людии 470

Least Common Words (from vocabulary)

Rank Word Frequency
1 катєгорїꙗ 2
2 سخ 2
3 هس 2
4 ش 2
5 ؤخخم 2
6 خىث 2
7 ىعةلاثق 2
8 صشس 2
9 пльсковьская 2
10 маѭтъ 2

Zipf's Law Analysis

Metric Value
Zipf Coefficient 0.9373
R² (Goodness of Fit) 0.986343
Adherence Quality excellent

Coverage Analysis

Top N Words Coverage
Top 100 41.0%
Top 1,000 72.8%
Top 5,000 96.2%
Top 10,000 0.0%

Key Findings

  • Zipf Compliance: R²=0.9863 indicates excellent adherence to Zipf's law
  • High Frequency Dominance: Top 100 words cover 41.0% of corpus
  • Long Tail: -3,811 words needed for remaining 100.0% coverage

5. Word Embeddings Evaluation

Embedding Isotropy

Similarity Matrix

t-SNE Words

t-SNE Sentences

5.1 Cross-Lingual Alignment

Alignment Quality

Multilingual t-SNE

5.2 Model Comparison

Model Dimension Isotropy Semantic Density Alignment R@1 Alignment R@10
mono_32d 32 0.2434 0.4441 N/A N/A
mono_64d 64 0.0769 0.4495 N/A N/A
mono_128d 128 0.0128 0.4700 N/A N/A
aligned_32d 32 0.2434 🏆 0.4485 0.0177 0.1032
aligned_64d 64 0.0769 0.4699 0.0324 0.1475
aligned_128d 128 0.0128 0.4554 0.0442 0.1357

Key Findings

  • Best Isotropy: aligned_32d with 0.2434 (more uniform distribution)
  • Semantic Density: Average pairwise similarity of 0.4562. Lower values indicate better semantic separation.
  • Alignment Quality: Aligned models achieve up to 4.4% R@1 in cross-lingual retrieval.
  • Recommendation: 128d aligned for best cross-lingual performance

6. Morphological Analysis (Experimental)

This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data.

6.1 Productivity & Complexity

Metric Value Interpretation Recommendation
Productivity Index 5.000 High morphological productivity Reliable analysis
Idiomaticity Gap 1.066 High formulaic/idiomatic content -

6.2 Affix Inventory (Productive Units)

These are the most productive prefixes and suffixes identified by sampling the vocabulary for global substitutability patterns. A unit is considered an affix if stripping it leaves a valid stem that appears in other contexts.

Productive Prefixes

Prefix Examples
-по поѩла, погꙑнѫли, польꙃєвати
-пр прєждє, придънѣстрии, прасловѣньскъ

Productive Suffixes

Suffix Examples
въꙁвращєнъ, дѣлъ, ѳєрапѡнтъ
-къ липьтьскъ, грьчьскъ, словѣньскъ
-нъ въꙁвращєнъ, гла́вьнъ, съꙁиждєнъ
-ка кировьска, фроунꙁєньска, видодъска
-скъ липьтьскъ, грьчьскъ, словѣньскъ
-ска кировьска, фроунꙁєньска, видодъска
-ьска кировьска, фроунꙁєньска, городєньска
-кꙑ блъгарьскꙑ, хръватьскꙑ, словѣньскꙑ

6.3 Bound Stems (Lexical Roots)

Bound stems are high-frequency subword units that are semantically cohesive but rarely appear as standalone words. These often correspond to the 'core' of a word that requires inflection or derivation to be valid.

Stem Cohesion Substitutability Examples
боук 1.89x 14 contexts боукꙑ, боуквꙑ, боукъвь
ловѣ 1.63x 18 contexts словѣ, чловѣкъ, словѣнє
слов 1.77x 14 contexts слово, словѣ, слова
ласт 1.55x 20 contexts властъ, власть, власти
ьжав 1.75x 13 contexts дрьжавꙑ, дрьжавъ, дрьжавѫ
ньск 1.65x 15 contexts мѣньска, мѣньскъ, жєньскъ
ьска 1.64x 14 contexts омьска, єстьска, сѣрьска
овѣн 1.83x 10 contexts словѣнє, словѣнъ, словѣнїꙗ
град 1.63x 13 contexts градѣ, градъ, гради
блас 1.69x 10 contexts ѡбласти, области, ѡбласть
ьскъ 1.63x 11 contexts омьскъ, римьскъ, ꙁємьскъ
рьжа 1.69x 9 contexts дрьжавꙑ, дрьжавъ, дрьжавѫ

6.4 Affix Compatibility (Co-occurrence)

This table shows which prefixes and suffixes most frequently co-occur on the same stems, revealing the 'stacking' rules of the language's morphology.

Prefix Suffix Frequency Examples
-по 34 words побѣдъ, помѣновєнъ
-пр 34 words прьвꙑимъ, проливъ
-по -нъ 11 words помѣновєнъ, посъланъ
-по -ка 7 words подъкарпатьска, по́л̑ьска
-по -къ 7 words подъбрадъкъ, подълѣсьскъ
-по -скъ 6 words подълѣсьскъ, пол҄ьскъ
-пр -нъ 6 words прѣданъ, природьнъ
-пр -къ 6 words приморьскъ, прьвотравєньскъ
-по -ска 5 words подъкарпатьска, по́л̑ьска
-по -ьскъ 5 words подълѣсьскъ, пол҄ьскъ

6.5 Recursive Morpheme Segmentation

Using Recursive Hierarchical Substitutability, we decompose complex words into their constituent morphemes. This approach handles nested affixes (e.g., prefix-prefix-root-suffix).

Word Suggested Split Confidence Stem
гєѡргїиска гєѡргїи-ска 4.5 гєѡргїи
посєлѥниѥ по-сєлѥниѥ 4.5 сєлѥниѥ
октѡврїиска октѡврїи-ска 4.5 октѡврїи
посєлѥниꙗ по-сєлѥниꙗ 4.5 сєлѥниꙗ
самостоꙗтєл҄ьна самостоꙗтєл҄ь-на 4.5 самостоꙗтєл҄ь
аѵстралїиска аѵстралїи-ска 4.5 аѵстралїи
самостоꙗтѣльна самостоꙗтѣль-на 4.5 самостоꙗтѣль
аѵстрїискъ аѵстрїи-скъ 4.5 аѵстрїи
приморьскъ пр-имор-ьскъ 3.0 имор
подольскъ по-доль-скъ 3.0 доль
полїтїчьскъ по-лїтїч-ьскъ 3.0 лїтїч
подъꙁємьнъ по-дъꙁємь-нъ 3.0 дъꙁємь
прѣѥмьникъ пр-ѣѥмьни-къ 3.0 ѣѥмьни
потрѣбьна по-трѣбь-на 3.0 трѣбь
политическа по-литиче-ска 3.0 литиче

6.6 Linguistic Interpretation

Automated Insight: The language Church Slavic shows high morphological productivity. The subword models are significantly more efficient than word models, suggesting a rich system of affixation or compounding.

Note on Idiomaticity: The high Idiomaticity Gap suggests a large number of frequent multi-word expressions or formulaic sequences that are statistically distinct from their component parts.


7. Summary & Recommendations

Performance Dashboard

Production Recommendations

Component Recommended Rationale
Tokenizer 32k BPE Best compression (4.94x)
N-gram 2-gram Lowest perplexity (451)
Markov Context-4 Highest predictability (97.9%)
Embeddings 100d Balanced semantic capture and isotropy

Appendix: Metrics Glossary & Interpretation Guide

This section provides definitions, intuitions, and guidance for interpreting the metrics used throughout this report.

Tokenizer Metrics

Compression Ratio

Definition: The ratio of characters to tokens (chars/token). Measures how efficiently the tokenizer represents text.

Intuition: Higher compression means fewer tokens needed to represent the same text, reducing sequence lengths for downstream models. A 3x compression means ~3 characters per token on average.

What to seek: Higher is generally better for efficiency, but extremely high compression may indicate overly aggressive merging that loses morphological information.

Average Token Length (Fertility)

Definition: Mean number of characters per token produced by the tokenizer.

Intuition: Reflects the granularity of tokenization. Longer tokens capture more context but may struggle with rare words; shorter tokens are more flexible but increase sequence length.

What to seek: Balance between 2-5 characters for most languages. Arabic/morphologically-rich languages may benefit from slightly longer tokens.

Unknown Token Rate (OOV Rate)

Definition: Percentage of tokens that map to the unknown/UNK token, indicating words the tokenizer cannot represent.

Intuition: Lower OOV means better vocabulary coverage. High OOV indicates the tokenizer encounters many unseen character sequences.

What to seek: Below 1% is excellent; below 5% is acceptable. BPE tokenizers typically achieve very low OOV due to subword fallback.

N-gram Model Metrics

Perplexity

Definition: Measures how "surprised" the model is by test data. Mathematically: 2^(cross-entropy). Lower values indicate better prediction.

Intuition: If perplexity is 100, the model is as uncertain as if choosing uniformly among 100 options at each step. A perplexity of 10 means effectively choosing among 10 equally likely options.

What to seek: Lower is better. Perplexity decreases with larger n-grams (more context). Values vary widely by language and corpus size.

Entropy

Definition: Average information content (in bits) needed to encode the next token given the context. Related to perplexity: perplexity = 2^entropy.

Intuition: High entropy means high uncertainty/randomness; low entropy means predictable patterns. Natural language typically has entropy between 1-4 bits per character.

What to seek: Lower entropy indicates more predictable text patterns. Entropy should decrease as n-gram size increases.

Coverage (Top-K)

Definition: Percentage of corpus occurrences explained by the top K most frequent n-grams.

Intuition: High coverage with few patterns indicates repetitive/formulaic text; low coverage suggests diverse vocabulary usage.

What to seek: Depends on use case. For language modeling, moderate coverage (40-60% with top-1000) is typical for natural text.

Markov Chain Metrics

Average Entropy

Definition: Mean entropy across all contexts, measuring average uncertainty in next-word prediction.

Intuition: Lower entropy means the model is more confident about what comes next. Context-1 has high entropy (many possible next words); Context-4 has low entropy (few likely continuations).

What to seek: Decreasing entropy with larger context sizes. Very low entropy (<0.1) indicates highly deterministic transitions.

Branching Factor

Definition: Average number of unique next tokens observed for each context.

Intuition: High branching = many possible continuations (flexible but uncertain); low branching = few options (predictable but potentially repetitive).

What to seek: Branching factor should decrease with context size. Values near 1.0 indicate nearly deterministic chains.

Predictability

Definition: Derived metric: (1 - normalized_entropy) × 100%. Indicates how deterministic the model's predictions are.

Intuition: 100% predictability means the next word is always certain; 0% means completely random. Real text falls between these extremes.

What to seek: Higher predictability for text generation quality, but too high (>98%) may produce repetitive output.

Vocabulary & Zipf's Law Metrics

Zipf's Coefficient

Definition: The slope of the log-log plot of word frequency vs. rank. Zipf's law predicts this should be approximately -1.

Intuition: A coefficient near -1 indicates the corpus follows natural language patterns where a few words are very common and most words are rare.

What to seek: Values between -0.8 and -1.2 indicate healthy natural language distribution. Deviations may suggest domain-specific or artificial text.

R² (Coefficient of Determination)

Definition: Measures how well the linear fit explains the frequency-rank relationship. Ranges from 0 to 1.

Intuition: R² near 1.0 means the data closely follows Zipf's law; lower values indicate deviation from expected word frequency patterns.

What to seek: R² > 0.95 is excellent; > 0.99 indicates near-perfect Zipf adherence typical of large natural corpora.

Vocabulary Coverage

Definition: Cumulative percentage of corpus tokens accounted for by the top N words.

Intuition: Shows how concentrated word usage is. If top-100 words cover 50% of text, the corpus relies heavily on common words.

What to seek: Top-100 covering 30-50% is typical. Higher coverage indicates more repetitive text; lower suggests richer vocabulary.

Word Embedding Metrics

Isotropy

Definition: Measures how uniformly distributed vectors are in the embedding space. Computed as the ratio of minimum to maximum singular values.

Intuition: High isotropy (near 1.0) means vectors spread evenly in all directions; low isotropy means vectors cluster in certain directions, reducing expressiveness.

What to seek: Higher isotropy generally indicates better-quality embeddings. Values > 0.1 are reasonable; > 0.3 is good. Lower-dimensional embeddings tend to have higher isotropy.

Average Norm

Definition: Mean magnitude (L2 norm) of word vectors in the embedding space.

Intuition: Indicates the typical "length" of vectors. Consistent norms suggest stable training; high variance may indicate some words are undertrained.

What to seek: Relatively consistent norms across models. The absolute value matters less than consistency (low std deviation).

Cosine Similarity

Definition: Measures angular similarity between vectors, ranging from -1 (opposite) to 1 (identical direction).

Intuition: Words with similar meanings should have high cosine similarity. This is the standard metric for semantic relatedness in embeddings.

What to seek: Semantically related words should score > 0.5; unrelated words should be near 0. Synonyms often score > 0.7.

t-SNE Visualization

Definition: t-Distributed Stochastic Neighbor Embedding - a dimensionality reduction technique that preserves local structure for visualization.

Intuition: Clusters in t-SNE plots indicate groups of semantically related words. Spread indicates vocabulary diversity; tight clusters suggest semantic coherence.

What to seek: Meaningful clusters (e.g., numbers together, verbs together). Avoid over-interpreting distances - t-SNE preserves local, not global, structure.

General Interpretation Guidelines

  1. Compare within model families: Metrics are most meaningful when comparing models of the same type (e.g., 8k vs 64k tokenizer).
  2. Consider trade-offs: Better performance on one metric often comes at the cost of another (e.g., compression vs. OOV rate).
  3. Context matters: Optimal values depend on downstream tasks. Text generation may prioritize different metrics than classification.
  4. Corpus influence: All metrics are influenced by corpus characteristics. Wikipedia text differs from social media or literature.
  5. Language-specific patterns: Morphologically rich languages (like Arabic) may show different optimal ranges than analytic languages.

Visualizations Index

Visualization Description
Tokenizer Compression Compression ratios by vocabulary size
Tokenizer Fertility Average token length by vocabulary
Tokenizer OOV Unknown token rates
Tokenizer Total Tokens Total tokens by vocabulary
N-gram Perplexity Perplexity by n-gram size
N-gram Entropy Entropy by n-gram size
N-gram Coverage Top pattern coverage
N-gram Unique Unique n-gram counts
Markov Entropy Entropy by context size
Markov Branching Branching factor by context
Markov Contexts Unique context counts
Zipf's Law Frequency-rank distribution with fit
Vocab Frequency Word frequency distribution
Top 20 Words Most frequent words
Vocab Coverage Cumulative coverage curve
Embedding Isotropy Vector space uniformity
Embedding Norms Vector magnitude distribution
Embedding Similarity Word similarity heatmap
Nearest Neighbors Similar words for key terms
t-SNE Words 2D word embedding visualization
t-SNE Sentences 2D sentence embedding visualization
Position Encoding Encoding method comparison
Model Sizes Storage requirements
Performance Dashboard Comprehensive performance overview

About This Project

Data Source

Models trained on wikipedia-monthly - a monthly snapshot of Wikipedia articles across 300+ languages.

Project

A project by Wikilangs - Open-source NLP models for every Wikipedia language.

Maintainer

Omar Kamali - Omneity Labs

Citation

If you use these models in your research, please cite:

@misc{wikilangs2025,
  author = {Kamali, Omar},
  title = {Wikilangs: Open NLP Models for Wikipedia Languages},
  year = {2025},
  doi = {10.5281/zenodo.18073153},
  publisher = {Zenodo},
  url = {https://huggingface.co/wikilangs}
  institution = {Omneity Labs}
}

License

MIT License - Free for academic and commercial use.

Links


Generated by Wikilangs Models Pipeline

Report Date: 2026-01-03 20:59:44

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Dataset used to train wikilangs/cu