Shaikat01's picture
Update app.py
6504afd verified
import gradio as gr
import pandas as pd
import numpy as np
import plotly.graph_objects as go
from datetime import datetime, timedelta
import pickle
import yfinance as yf
import os
import re
from statsmodels.tsa.arima.model import ARIMA
from prophet import Prophet
from tensorflow import keras
from sklearn.preprocessing import MinMaxScaler
import warnings
warnings.filterwarnings('ignore')
# Load your saved models (update paths as needed)
# For Hugging Face, these will be in the same directory as app.py
def load_models():
"""Load all three models"""
try:
# Load ARIMA model
with open('arima_model.pkl', 'rb') as f:
arima_model = pickle.load(f)
# Load Prophet model
with open('prophet_model.pkl', 'rb') as f:
prophet_model = pickle.load(f)
# Load LSTM model and scaler
lstm_model = keras.models.load_model('lstm_model.h5')
with open('lstm_scaler.pkl', 'rb') as f:
scaler = pickle.load(f)
return arima_model, prophet_model, lstm_model, scaler
except Exception as e:
print(f"Error loading models: {e}")
return None, None, None, None
# Global variables for models
arima_model, prophet_model, lstm_model, scaler = load_models()
SEQ_LENGTH = 60 # Should match your training
def fetch_stock_data(ticker, days=365):
"""Fetch stock data from Yahoo Finance"""
try:
# Prefer local CSV file named <TICKER>.csv in the project root
csv_name = f"{ticker.upper()}.csv"
workspace_dir = os.path.dirname(__file__)
csv_path = os.path.join(workspace_dir, csv_name)
if os.path.exists(csv_path):
# Read the CSV fully, then detect which column contains dates. Many of
# the CSVs here contain extra header/noise rows; reading everything and
# filtering non-date rows is more robust than skipping rows beforehand.
df_raw = pd.read_csv(csv_path, header=0, dtype=str)
# Try to detect a date column by checking which column's values look like dates
date_col = None
for col in df_raw.columns:
sample = df_raw[col].astype(str).head(20)
matches = sample.str.match(r"^\s*\d{4}-\d{2}-\d{2}")
if matches.sum() >= max(1, int(len(sample) * 0.5)):
date_col = col
break
if date_col is None and 'Date' in df_raw.columns:
date_col = 'Date'
if date_col is not None:
df_raw[date_col] = pd.to_datetime(df_raw[date_col], errors='coerce')
df = df_raw.dropna(subset=[date_col]).copy()
df.set_index(date_col, inplace=True)
else:
# Try parsing the index as dates (if CSV had implicit index)
try:
df_raw.index = pd.to_datetime(df_raw.index)
df = df_raw.copy()
except Exception:
# Give up and use raw DataFrame โ€” downstream checks will catch issues
df = df_raw.copy()
# Prefer 'Close' column, fall back to common alternatives
if 'Close' in df.columns:
df = df[['Close']].copy()
elif 'Adj Close' in df.columns:
df = df[['Adj Close']].copy()
df.columns = ['Close']
elif 'Close*' in df.columns:
df = df[['Close*']].copy()
df.columns = ['Close']
else:
# Try to find a column that looks like price
possible = [c for c in df.columns if 'close' in c.lower() or 'price' in c.lower()]
if possible:
df = df[[possible[0]]].copy()
df.columns = ['Close']
else:
return None, f"Local CSV found but no 'Close' column in {csv_name}"
# Coerce to numeric price and drop rows that can't be converted
df.columns = ['Price']
df['Price'] = pd.to_numeric(df['Price'], errors='coerce')
df.dropna(subset=['Price'], inplace=True)
# Ensure sorted by date
df.sort_index(inplace=True)
# Remove index name to avoid printing a duplicate label
try:
df.index.name = None
except Exception:
pass
# Slice to the requested window (last `days` days)
if days is not None and days > 0:
start_dt = df.index.max() - timedelta(days=days - 1)
df = df.loc[df.index >= start_dt]
if df.empty:
return None, f"No data in local CSV for the requested period: {csv_name}"
return df, None
except Exception as e:
return None, f"Error fetching stock data: {e}"
def make_arima_forecast(data, days):
"""Make ARIMA forecast"""
try:
# Retrain ARIMA with recent data (or use loaded model)
model = ARIMA(data['Price'], order=(1, 1, 1))
fitted = model.fit()
forecast = fitted.forecast(steps=days)
return forecast.values
except Exception as e:
print(f"ARIMA Error: {e}")
return None
def make_prophet_forecast(data, days):
"""Make Prophet forecast"""
try:
# Prepare data for Prophet
prophet_data = pd.DataFrame({
'ds': data.index,
'y': data['Price'].values
})
# Create and fit model
model = Prophet(
daily_seasonality=True,
weekly_seasonality=True,
yearly_seasonality=True,
changepoint_prior_scale=0.05
)
model.fit(prophet_data)
# Make forecast
future = model.make_future_dataframe(periods=days)
forecast = model.predict(future)
return forecast['yhat'].tail(days).values
except Exception as e:
print(f"Prophet Error: {e}")
return None
def make_lstm_forecast(data, days, model, scaler, seq_length=60):
"""Make LSTM forecast"""
try:
# Scale the data
scaled_data = scaler.transform(data[['Price']])
# Prepare the last sequence
last_sequence = scaled_data[-seq_length:].reshape(1, seq_length, 1)
predictions = []
current_sequence = last_sequence.copy()
# Generate predictions day by day
for _ in range(days):
pred = model.predict(current_sequence, verbose=0)
predictions.append(pred[0, 0])
# Update sequence
current_sequence = np.append(current_sequence[:, 1:, :],
pred.reshape(1, 1, 1), axis=1)
# Inverse transform predictions
predictions = scaler.inverse_transform(np.array(predictions).reshape(-1, 1))
return predictions.flatten()
except Exception as e:
print(f"LSTM Error: {e}")
return None
def create_forecast_plot(historical_data, forecasts, ticker, model_names):
"""Create interactive plotly chart"""
fig = go.Figure()
# Historical data
fig.add_trace(go.Scatter(
x=historical_data.index,
y=historical_data['Price'],
mode='lines',
name='Historical Price',
line=dict(color='blue', width=2)
))
# Generate future dates
last_date = historical_data.index[-1]
future_dates = pd.date_range(start=last_date + timedelta(days=1),
periods=len(forecasts[0]))
# Plot forecasts
colors = ['red', 'purple', 'orange']
for i, (forecast, name) in enumerate(zip(forecasts, model_names)):
if forecast is not None:
fig.add_trace(go.Scatter(
x=future_dates,
y=forecast,
mode='lines+markers',
name=f'{name} Forecast',
line=dict(color=colors[i], width=2, dash='dash'),
marker=dict(size=6)
))
fig.update_layout(
title=f'{ticker} Stock Price Forecast',
xaxis_title='Date',
yaxis_title='Price ($)',
hovermode='x unified',
template='plotly_white',
height=600,
showlegend=True,
legend=dict(
yanchor="top",
y=0.99,
xanchor="left",
x=0.01
)
)
return fig
def predict_stock(ticker, forecast_days, model_choice):
"""Main prediction function"""
# Validate inputs
if not ticker:
return None, "Please enter a stock ticker symbol", None
ticker = ticker.upper().strip()
# Fetch data
data, error = fetch_stock_data(ticker, days=730) # 2 years of data
if error:
return None, f"Error: {error}", None
# Make forecasts based on model choice
forecasts = []
model_names = []
if model_choice in ["All Models", "ARIMA"]:
arima_forecast = make_arima_forecast(data, forecast_days)
if arima_forecast is not None:
forecasts.append(arima_forecast)
model_names.append("ARIMA")
if model_choice in ["All Models", "Prophet"]:
prophet_forecast = make_prophet_forecast(data, forecast_days)
if prophet_forecast is not None:
forecasts.append(prophet_forecast)
model_names.append("Prophet")
if model_choice in ["All Models", "LSTM"] and lstm_model is not None:
lstm_forecast = make_lstm_forecast(data, forecast_days, lstm_model, scaler, SEQ_LENGTH)
if lstm_forecast is not None:
forecasts.append(lstm_forecast)
model_names.append("LSTM")
if not forecasts:
return None, "Failed to generate forecasts. Please try again.", None
# Create plot
fig = create_forecast_plot(data, forecasts, ticker, model_names)
# Create forecast table
future_dates = pd.date_range(
start=data.index[-1] + timedelta(days=1),
periods=forecast_days
)
forecast_df = pd.DataFrame({'Date': future_dates.strftime('%Y-%m-%d')})
for forecast, name in zip(forecasts, model_names):
forecast_df[f'{name} Prediction ($)'] = np.round(forecast, 2)
# Summary statistics
summary = f"""
๐Ÿ“Š **Forecast Summary for {ticker}**
- Current Price: ${data['Price'].iloc[-1]:.2f}
- Forecast Period: {forecast_days} days
- Models Used: {', '.join(model_names)}
**Predicted Price Range (Day {forecast_days}):**
"""
for forecast, name in zip(forecasts, model_names):
final_price = forecast[-1]
change = ((final_price - data['Price'].iloc[-1]) / data['Price'].iloc[-1]) * 100
summary += f"\n- {name}: ${final_price:.2f} ({change:+.2f}%)"
return fig, summary, forecast_df
# Create Gradio Interface
with gr.Blocks(title="Stock Price Forecasting", theme=gr.themes.Soft()) as demo:
gr.Markdown(
"""
# ๐Ÿ“ˆ Stock Price Forecasting App
Predict future stock prices using ARIMA, Prophet, and LSTM models.
Enter a stock ticker symbol and select forecast parameters below.
**Note:** Predictions are for educational purposes only. Not financial advice.
"""
)
with gr.Row():
with gr.Column(scale=1):
ticker_input = gr.Textbox(
label="Stock Ticker Symbol",
placeholder="e.g., AAPL, GOOGL, TSLA",
value="AAPL"
)
forecast_days = gr.Slider(
minimum=1,
maximum=90,
value=30,
step=1,
label="Forecast Days"
)
model_choice = gr.Radio(
choices=["All Models", "ARIMA", "Prophet", "LSTM"],
value="All Models",
label="Select Model(s)"
)
predict_btn = gr.Button("๐Ÿ”ฎ Generate Forecast", variant="primary", size="lg")
with gr.Column(scale=2):
output_plot = gr.Plot(label="Forecast Visualization")
with gr.Row():
output_summary = gr.Markdown(label="Forecast Summary")
with gr.Row():
output_table = gr.Dataframe(
label="Detailed Forecast",
wrap=True,
interactive=False
)
# Examples
gr.Examples(
examples=[
["AAPL", 30, "All Models"],
["GOOGL", 14, "Prophet"],
["TSLA", 60, "LSTM"],
["MSFT", 45, "ARIMA"],
],
inputs=[ticker_input, forecast_days, model_choice],
)
# Connect the button to the function
predict_btn.click(
fn=predict_stock,
inputs=[ticker_input, forecast_days, model_choice],
outputs=[output_plot, output_summary, output_table]
)
gr.Markdown(
"""
---
### ๐Ÿ“š About the Models
- **ARIMA**: Statistical model for time series forecasting
- **Prophet**: Facebook's forecasting tool, excellent for seasonality
- **LSTM**: Deep learning model that captures complex patterns
### โš ๏ธ Disclaimer
This tool is for educational and research purposes only. Stock market predictions are inherently uncertain.
Always conduct thorough research and consult with financial advisors before making investment decisions.
"""
)
# Launch the app
if __name__ == "__main__":
demo.launch()