import gradio as gr import pandas as pd import numpy as np import plotly.graph_objects as go from datetime import datetime, timedelta import pickle import yfinance as yf import os import re from statsmodels.tsa.arima.model import ARIMA from prophet import Prophet from tensorflow import keras from sklearn.preprocessing import MinMaxScaler import warnings warnings.filterwarnings('ignore') # Load your saved models (update paths as needed) # For Hugging Face, these will be in the same directory as app.py def load_models(): """Load all three models""" try: # Load ARIMA model with open('arima_model.pkl', 'rb') as f: arima_model = pickle.load(f) # Load Prophet model with open('prophet_model.pkl', 'rb') as f: prophet_model = pickle.load(f) # Load LSTM model and scaler lstm_model = keras.models.load_model('lstm_model.h5') with open('lstm_scaler.pkl', 'rb') as f: scaler = pickle.load(f) return arima_model, prophet_model, lstm_model, scaler except Exception as e: print(f"Error loading models: {e}") return None, None, None, None # Global variables for models arima_model, prophet_model, lstm_model, scaler = load_models() SEQ_LENGTH = 60 # Should match your training def fetch_stock_data(ticker, days=365): """Fetch stock data from Yahoo Finance""" try: # Prefer local CSV file named .csv in the project root csv_name = f"{ticker.upper()}.csv" workspace_dir = os.path.dirname(__file__) csv_path = os.path.join(workspace_dir, csv_name) if os.path.exists(csv_path): # Read the CSV fully, then detect which column contains dates. Many of # the CSVs here contain extra header/noise rows; reading everything and # filtering non-date rows is more robust than skipping rows beforehand. df_raw = pd.read_csv(csv_path, header=0, dtype=str) # Try to detect a date column by checking which column's values look like dates date_col = None for col in df_raw.columns: sample = df_raw[col].astype(str).head(20) matches = sample.str.match(r"^\s*\d{4}-\d{2}-\d{2}") if matches.sum() >= max(1, int(len(sample) * 0.5)): date_col = col break if date_col is None and 'Date' in df_raw.columns: date_col = 'Date' if date_col is not None: df_raw[date_col] = pd.to_datetime(df_raw[date_col], errors='coerce') df = df_raw.dropna(subset=[date_col]).copy() df.set_index(date_col, inplace=True) else: # Try parsing the index as dates (if CSV had implicit index) try: df_raw.index = pd.to_datetime(df_raw.index) df = df_raw.copy() except Exception: # Give up and use raw DataFrame — downstream checks will catch issues df = df_raw.copy() # Prefer 'Close' column, fall back to common alternatives if 'Close' in df.columns: df = df[['Close']].copy() elif 'Adj Close' in df.columns: df = df[['Adj Close']].copy() df.columns = ['Close'] elif 'Close*' in df.columns: df = df[['Close*']].copy() df.columns = ['Close'] else: # Try to find a column that looks like price possible = [c for c in df.columns if 'close' in c.lower() or 'price' in c.lower()] if possible: df = df[[possible[0]]].copy() df.columns = ['Close'] else: return None, f"Local CSV found but no 'Close' column in {csv_name}" # Coerce to numeric price and drop rows that can't be converted df.columns = ['Price'] df['Price'] = pd.to_numeric(df['Price'], errors='coerce') df.dropna(subset=['Price'], inplace=True) # Ensure sorted by date df.sort_index(inplace=True) # Remove index name to avoid printing a duplicate label try: df.index.name = None except Exception: pass # Slice to the requested window (last `days` days) if days is not None and days > 0: start_dt = df.index.max() - timedelta(days=days - 1) df = df.loc[df.index >= start_dt] if df.empty: return None, f"No data in local CSV for the requested period: {csv_name}" return df, None except Exception as e: return None, f"Error fetching stock data: {e}" def make_arima_forecast(data, days): """Make ARIMA forecast""" try: # Retrain ARIMA with recent data (or use loaded model) model = ARIMA(data['Price'], order=(1, 1, 1)) fitted = model.fit() forecast = fitted.forecast(steps=days) return forecast.values except Exception as e: print(f"ARIMA Error: {e}") return None def make_prophet_forecast(data, days): """Make Prophet forecast""" try: # Prepare data for Prophet prophet_data = pd.DataFrame({ 'ds': data.index, 'y': data['Price'].values }) # Create and fit model model = Prophet( daily_seasonality=True, weekly_seasonality=True, yearly_seasonality=True, changepoint_prior_scale=0.05 ) model.fit(prophet_data) # Make forecast future = model.make_future_dataframe(periods=days) forecast = model.predict(future) return forecast['yhat'].tail(days).values except Exception as e: print(f"Prophet Error: {e}") return None def make_lstm_forecast(data, days, model, scaler, seq_length=60): """Make LSTM forecast""" try: # Scale the data scaled_data = scaler.transform(data[['Price']]) # Prepare the last sequence last_sequence = scaled_data[-seq_length:].reshape(1, seq_length, 1) predictions = [] current_sequence = last_sequence.copy() # Generate predictions day by day for _ in range(days): pred = model.predict(current_sequence, verbose=0) predictions.append(pred[0, 0]) # Update sequence current_sequence = np.append(current_sequence[:, 1:, :], pred.reshape(1, 1, 1), axis=1) # Inverse transform predictions predictions = scaler.inverse_transform(np.array(predictions).reshape(-1, 1)) return predictions.flatten() except Exception as e: print(f"LSTM Error: {e}") return None def create_forecast_plot(historical_data, forecasts, ticker, model_names): """Create interactive plotly chart""" fig = go.Figure() # Historical data fig.add_trace(go.Scatter( x=historical_data.index, y=historical_data['Price'], mode='lines', name='Historical Price', line=dict(color='blue', width=2) )) # Generate future dates last_date = historical_data.index[-1] future_dates = pd.date_range(start=last_date + timedelta(days=1), periods=len(forecasts[0])) # Plot forecasts colors = ['red', 'purple', 'orange'] for i, (forecast, name) in enumerate(zip(forecasts, model_names)): if forecast is not None: fig.add_trace(go.Scatter( x=future_dates, y=forecast, mode='lines+markers', name=f'{name} Forecast', line=dict(color=colors[i], width=2, dash='dash'), marker=dict(size=6) )) fig.update_layout( title=f'{ticker} Stock Price Forecast', xaxis_title='Date', yaxis_title='Price ($)', hovermode='x unified', template='plotly_white', height=600, showlegend=True, legend=dict( yanchor="top", y=0.99, xanchor="left", x=0.01 ) ) return fig def predict_stock(ticker, forecast_days, model_choice): """Main prediction function""" # Validate inputs if not ticker: return None, "Please enter a stock ticker symbol", None ticker = ticker.upper().strip() # Fetch data data, error = fetch_stock_data(ticker, days=730) # 2 years of data if error: return None, f"Error: {error}", None # Make forecasts based on model choice forecasts = [] model_names = [] if model_choice in ["All Models", "ARIMA"]: arima_forecast = make_arima_forecast(data, forecast_days) if arima_forecast is not None: forecasts.append(arima_forecast) model_names.append("ARIMA") if model_choice in ["All Models", "Prophet"]: prophet_forecast = make_prophet_forecast(data, forecast_days) if prophet_forecast is not None: forecasts.append(prophet_forecast) model_names.append("Prophet") if model_choice in ["All Models", "LSTM"] and lstm_model is not None: lstm_forecast = make_lstm_forecast(data, forecast_days, lstm_model, scaler, SEQ_LENGTH) if lstm_forecast is not None: forecasts.append(lstm_forecast) model_names.append("LSTM") if not forecasts: return None, "Failed to generate forecasts. Please try again.", None # Create plot fig = create_forecast_plot(data, forecasts, ticker, model_names) # Create forecast table future_dates = pd.date_range( start=data.index[-1] + timedelta(days=1), periods=forecast_days ) forecast_df = pd.DataFrame({'Date': future_dates.strftime('%Y-%m-%d')}) for forecast, name in zip(forecasts, model_names): forecast_df[f'{name} Prediction ($)'] = np.round(forecast, 2) # Summary statistics summary = f""" 📊 **Forecast Summary for {ticker}** - Current Price: ${data['Price'].iloc[-1]:.2f} - Forecast Period: {forecast_days} days - Models Used: {', '.join(model_names)} **Predicted Price Range (Day {forecast_days}):** """ for forecast, name in zip(forecasts, model_names): final_price = forecast[-1] change = ((final_price - data['Price'].iloc[-1]) / data['Price'].iloc[-1]) * 100 summary += f"\n- {name}: ${final_price:.2f} ({change:+.2f}%)" return fig, summary, forecast_df # Create Gradio Interface with gr.Blocks(title="Stock Price Forecasting", theme=gr.themes.Soft()) as demo: gr.Markdown( """ # 📈 Stock Price Forecasting App Predict future stock prices using ARIMA, Prophet, and LSTM models. Enter a stock ticker symbol and select forecast parameters below. **Note:** Predictions are for educational purposes only. Not financial advice. """ ) with gr.Row(): with gr.Column(scale=1): ticker_input = gr.Textbox( label="Stock Ticker Symbol", placeholder="e.g., AAPL, GOOGL, TSLA", value="AAPL" ) forecast_days = gr.Slider( minimum=1, maximum=90, value=30, step=1, label="Forecast Days" ) model_choice = gr.Radio( choices=["All Models", "ARIMA", "Prophet", "LSTM"], value="All Models", label="Select Model(s)" ) predict_btn = gr.Button("🔮 Generate Forecast", variant="primary", size="lg") with gr.Column(scale=2): output_plot = gr.Plot(label="Forecast Visualization") with gr.Row(): output_summary = gr.Markdown(label="Forecast Summary") with gr.Row(): output_table = gr.Dataframe( label="Detailed Forecast", wrap=True, interactive=False ) # Examples gr.Examples( examples=[ ["AAPL", 30, "All Models"], ["GOOGL", 14, "Prophet"], ["TSLA", 60, "LSTM"], ["MSFT", 45, "ARIMA"], ], inputs=[ticker_input, forecast_days, model_choice], ) # Connect the button to the function predict_btn.click( fn=predict_stock, inputs=[ticker_input, forecast_days, model_choice], outputs=[output_plot, output_summary, output_table] ) gr.Markdown( """ --- ### 📚 About the Models - **ARIMA**: Statistical model for time series forecasting - **Prophet**: Facebook's forecasting tool, excellent for seasonality - **LSTM**: Deep learning model that captures complex patterns ### ⚠️ Disclaimer This tool is for educational and research purposes only. Stock market predictions are inherently uncertain. Always conduct thorough research and consult with financial advisors before making investment decisions. """ ) # Launch the app if __name__ == "__main__": demo.launch()