See axolotl config
axolotl version: 0.13.0.dev0
# Axolotl SFT configuration for Qwen3-8B on 8x MI300X
# 2X LR
base_model: /data/outputs/172-shisa-v1-7b-v2.1-midtrain
load_in_8bit: false
load_in_4bit: false
strict: false
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_glu_activation: true
liger_fused_linear_cross_entropy: true
chat_template: tokenizer_default
chat_template_kwargs:
enable_thinking: false
datasets:
- path: sft.shisa-v2.1.jsonl
type: chat_template
field_messages: conversations
message_property_mappings:
role: role
content: content
roles:
system:
- system
assistant:
- assistant
- gpt
- model
user:
- user
- human
roles_to_train: ["assistant"]
shuffle_merged_datasets: false
dataset_prepared_path: data/173
val_set_size: 0
output_dir: /data/outputs/173-shisa-v1-7b-v2.1-midtrain-sft
sequence_len: 8192
sample_packing: true
flash_attention: true
pad_to_sequence_len: true
neftune_noise_alpha: 5
use_wandb: true
wandb_entity: augmxnt
wandb_project: shisa-v2.1
wandb_name: 173-shisa-v1-7b-v2.1-midtrain-sft
# GBS 128 = 8 GPU x 16 MBS x 1 GAS
gradient_accumulation_steps: 1
micro_batch_size: 16
num_epochs: 3
optimizer: adamw_torch_8bit
lr_scheduler: cosine
learning_rate: 1e-05
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
logging_steps: 1
warmup_ratio: 0.03
saves_per_epoch: 1
save_total_limit: 3
deepspeed: zero3_bf16.json
weight_decay: 1e-4
fsdp:
fsdp_config:
special_tokens:
data/outputs/173-shisa-v1-7b-v2.1-midtrain-sft
This model was trained from scratch on the sft.shisa-v2.1.jsonl dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 128
- total_eval_batch_size: 128
- optimizer: Use OptimizerNames.ADAMW_TORCH_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 32
- training_steps: 1080
Training results
Framework versions
- Transformers 4.57.1
- Pytorch 2.8.0+rocm6.4
- Datasets 4.3.0
- Tokenizers 0.22.1
- Downloads last month
- 13