mental-roberta-large-pr
This model is a fine-tuned version of AIMH/mental-roberta-large on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.3882
- F1 Macro: 0.6298
- Precision: 0.6338
- Recall: 0.6393
- Accuracy: 0.7836
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | F1 Macro | Precision | Recall | Accuracy |
|---|---|---|---|---|---|---|---|
| No log | 1.0 | 240 | 1.3410 | 0.5133 | 0.5270 | 0.5471 | 0.6894 |
| No log | 2.0 | 480 | 0.8069 | 0.6099 | 0.5990 | 0.6440 | 0.7445 |
| 1.75 | 3.0 | 720 | 0.7779 | 0.6290 | 0.6333 | 0.6492 | 0.7752 |
| 1.75 | 4.0 | 960 | 0.8297 | 0.6240 | 0.6311 | 0.6390 | 0.7804 |
| 0.6742 | 5.0 | 1200 | 1.0208 | 0.6312 | 0.6295 | 0.6439 | 0.7737 |
| 0.6742 | 6.0 | 1440 | 1.1990 | 0.6294 | 0.6374 | 0.6384 | 0.7804 |
| 0.2441 | 7.0 | 1680 | 1.3882 | 0.6298 | 0.6338 | 0.6393 | 0.7836 |
Framework versions
- Transformers 4.57.1
- Pytorch 2.8.0+cu128
- Datasets 4.4.1
- Tokenizers 0.22.1
- Downloads last month
- -
Model tree for rendchevi/mental-roberta-large-pr
Base model
AIMH/mental-roberta-large