AI & ML interests

Open science and open source

Recent Activity

freddyaboulton 
posted an update 4 months ago
freddyaboulton 
posted an update 7 months ago
freddyaboulton 
posted an update 7 months ago
freddyaboulton 
posted an update 7 months ago
freddyaboulton 
posted an update 10 months ago
view post
Post
2258
Ever wanted to share your AI creations with friends? ✨

Screenshots are fine, but imagine letting others play with your ACTUAL model!

Introducing Gradio deep links 🔗 - now you can share interactive AI apps, not just images.

Add a gr.DeepLinkButton to any app and get shareable URLs that let ANYONE experiment with your models.

freddyaboulton 
posted an update 10 months ago
view post
Post
2094
Privacy matters when talking to AI! 🔇

We've just added a microphone mute button to FastRTC in our latest update (v0.0.14). Now you control exactly what your LLM hears.

Plus lots more features in this release! Check them out:
https://github.com/freddyaboulton/fastrtc/releases/tag/0.0.14
freddyaboulton 
posted an update 11 months ago
view post
Post
3413
Getting WebRTC and Websockets right in python is very tricky. If you've tried to wrap an LLM in a real-time audio layer then you know what I'm talking about.

That's where FastRTC comes in! It makes WebRTC and Websocket streams super easy with minimal code and overhead.

Check out our org: hf.co/fastrtc
jxm 
posted an update 12 months ago
view post
Post
1770
New state-of-the-art BERT-size retrieval model: *cde-small-v2* 🥳🍾

Hi everyone! We at Cornell are releasing a new retrieval model this week. It uses the contextual embeddings framework, is based on ModernBERT backbone, and gets state-of-the-art results on the MTEB benchmark for its model size (140M parameters). cde-small-v2 gets an average score of 65.6 across the 56 datasets and sees improvements from our previous model in *every* task domain (retrieval, classification, etc.).

We made a lot of changes to make this model work. First of all, ModernBERT has a better tokenizer, which probably helped this work out-of-the-box. We also followed the principles from the CDE paper and used harder clusters and better hard-negative filtering, which showed a small performance improvement. And we made a few small changes that have been shown to work on the larger models: we disabled weight decay, masked out the prefix tokens during pooling, and added a residual connection from the first-stage to the second-stage for better gradient flow.

We're still looking for a computer sponsor to help us scale CDE to larger models. Since it's now state-of-the-art at the 100M parameter scale, it seems to be a reasonable bet that we could train a state-of-the-art large model if we had the GPUs. If you're interested in helping with this, please reach out!

Here's a link to the model: jxm/cde-small-v2
And here's a link to the paper: Contextual Document Embeddings (2410.02525)
freddyaboulton 
posted an update about 1 year ago
freddyaboulton 
posted an update about 1 year ago
freddyaboulton 
posted an update about 1 year ago
view post
Post
3190
Version 0.0.21 of gradio-pdf now properly loads chinese characters!
freddyaboulton 
posted an update about 1 year ago
view post
Post
1698
Hello Llama 3.2! 🗣️🦙

Build a Siri-like coding assistant that responds to "Hello Llama" in 100 lines of python! All with Gradio, webRTC 😎

freddyaboulton/hey-llama-code-editor
freddyaboulton 
posted an update about 1 year ago
Draichi 
posted an update about 1 year ago
view post
Post
3594
🏁 Now it is possible to chat with telemetry data from real Formula 1 races!

This is an AI-powered solution for analyzing and generating detailed reports on Formula 1 racing sessions. This project combines the power of ReAct agents from LangChain with a RAG approach to pull data from a SQL database.

At the core of this system is a text-to-SQL capability that allows users to ask natural language questions about various aspects of F1 races, such as driver performance, weather impact, race strategies, and more. The AI agent then queries the database, processes the information, and generates comprehensive reports tailored to the user's needs.

The reports can be exported in various formats, making it easy to share insights with team members, race fans, or the broader motorsports community.

(The project is in beta, some erros may occur)

Check it out:

- Draichi/Formula1-race-debriefing
- https://github.com/Draichi/formula1-AI
  • 1 reply
·