deepdml's picture
Update README.md
be46e08 verified
metadata
language:
  - ar
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_17_0
  - google/fleurs
  - ymoslem/MediaSpeech
metrics:
  - wer
model-index:
  - name: Whisper Small ar
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 17.0
          type: mozilla-foundation/common_voice_17_0
          config: ar
          split: test
          args: ar
        metrics:
          - name: Wer
            type: wer
            value: 60.99884137633713

Whisper Small ar

This model is a fine-tuned version of openai/whisper-small on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 2.0345
  • Wer: 60.9988

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 64
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000

Training results

Training Loss Epoch Step Validation Loss Wer
0.1333 0.2 1000 1.6477 58.9201
0.0766 1.0454 2000 1.8054 62.8257
0.0554 1.2454 3000 1.8952 55.9413
0.0358 2.0908 4000 1.9780 64.4329
0.0203 2.2908 5000 2.0345 60.9988

Framework versions

  • Transformers 4.42.0.dev0
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1