b8848b309daf9cbd7251f04ac0a77b0d

This model is a fine-tuned version of distilbert/distilbert-base-german-cased on the nyu-mll/glue [qnli] dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5541
  • Data Size: 1.0
  • Epoch Runtime: 86.5958
  • Accuracy: 0.8046
  • F1 Macro: 0.8039
  • Rouge1: 0.8046
  • Rouge2: 0.0
  • Rougel: 0.8046
  • Rougelsum: 0.8042

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • total_train_batch_size: 32
  • total_eval_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: constant
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Data Size Epoch Runtime Accuracy F1 Macro Rouge1 Rouge2 Rougel Rougelsum
No log 0 0 0.7029 0 2.0318 0.4943 0.3308 0.4947 0.0 0.4943 0.4944
No log 1 3273 0.6051 0.0078 4.0144 0.7233 0.7233 0.7233 0.0 0.7232 0.7230
0.0102 2 6546 0.5370 0.0156 3.6080 0.7546 0.7535 0.7548 0.0 0.7544 0.7542
0.5417 3 9819 0.4824 0.0312 5.0655 0.7704 0.7700 0.7705 0.0 0.7702 0.7702
0.5088 4 13092 0.4726 0.0625 7.9030 0.7774 0.7756 0.7774 0.0 0.7776 0.7772
0.4589 5 16365 0.4344 0.125 13.2498 0.8053 0.8051 0.8055 0.0 0.8054 0.8053
0.4912 6 19638 0.4588 0.25 23.4593 0.7853 0.7831 0.7853 0.0 0.7855 0.7853
0.4348 7 22911 0.4302 0.5 44.0955 0.8050 0.8042 0.8050 0.0 0.8051 0.8048
0.4331 8.0 26184 0.4341 1.0 85.0020 0.8187 0.8185 0.8187 0.0 0.8189 0.8186
0.3468 9.0 29457 0.4354 1.0 90.1068 0.8123 0.8120 0.8121 0.0 0.8121 0.8121
0.2824 10.0 32730 0.4595 1.0 86.3276 0.8173 0.8173 0.8176 0.0 0.8175 0.8173
0.254 11.0 36003 0.5541 1.0 86.5958 0.8046 0.8039 0.8046 0.0 0.8046 0.8042

Framework versions

  • Transformers 4.57.0
  • Pytorch 2.8.0+cu128
  • Datasets 4.3.0
  • Tokenizers 0.22.1
Downloads last month
6
Safetensors
Model size
67.4M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for contemmcm/b8848b309daf9cbd7251f04ac0a77b0d

Finetuned
(36)
this model

Evaluation results