How to use

To load and use this traffic prediction model in Python:

import joblib
from huggingface_hub import hf_hub_download
import pandas as pd

repo_id = "Waleed74/traffic-prediction-pk"

# Download model & encoder
model_path = hf_hub_download(repo_id=repo_id, filename="traffic_classifier.pkl")
encoder_path = hf_hub_download(repo_id=repo_id, filename="target_encoder.pkl")

# Load them
model = joblib.load(model_path)
target_encoder = joblib.load(encoder_path)

feature_names = model.feature_names_in_
print("Feature names:", feature_names)

# Example input row
row = [
    18,   # Time
    2,    # Day of the week
    320,  # CarCount
    150,  # BikeCount
    20,   # BusCount
    10,   # TruckCount
    500,  # Total
    0     # Traffic Situation
]

df = pd.DataFrame([row], columns=feature_names)

prediction = model.predict(df)
predicted_label = target_encoder.inverse_transform(prediction)[0]

print("Predicted Traffic Status:", predicted_label)
Downloads last month
-
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support