Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks
Paper
•
1908.10084
•
Published
•
9
This is a sentence-transformers model finetuned from uitnlp/CafeBERT. It maps sentences & paragraphs to a 256-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Dense({'in_features': 1024, 'out_features': 256, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("ThuanPhong/sentence_CafeBERT")
# Run inference
sentences = [
'Chúng tôi đang tiến vào sa mạc.',
'Chúng tôi chuyển đến sa mạc.',
'Người phụ nữ này đang chạy vì cô ta đến muộn.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 256]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
BinaryClassificationEvaluator| Metric | Value |
|---|---|
| cosine_accuracy | 0.5404 |
| cosine_accuracy_threshold | 1.0 |
| cosine_f1 | 0.6299 |
| cosine_f1_threshold | 1.0 |
| cosine_precision | 0.4597 |
| cosine_recall | 1.0 |
| cosine_ap | 0.4597 |
| dot_accuracy | 0.5403 |
| dot_accuracy_threshold | 46.2905 |
| dot_f1 | 0.6299 |
| dot_f1_threshold | 46.2905 |
| dot_precision | 0.4597 |
| dot_recall | 0.9999 |
| dot_ap | 0.4578 |
| manhattan_accuracy | 0.5411 |
| manhattan_accuracy_threshold | 0.0 |
| manhattan_f1 | 0.6299 |
| manhattan_f1_threshold | 0.0002 |
| manhattan_precision | 0.4597 |
| manhattan_recall | 1.0 |
| manhattan_ap | 0.4604 |
| euclidean_accuracy | 0.5412 |
| euclidean_accuracy_threshold | 0.0 |
| euclidean_f1 | 0.6299 |
| euclidean_f1_threshold | 0.0 |
| euclidean_precision | 0.4597 |
| euclidean_recall | 1.0 |
| euclidean_ap | 0.4602 |
| max_accuracy | 0.5412 |
| max_accuracy_threshold | 46.2905 |
| max_f1 | 0.6299 |
| max_f1_threshold | 46.2905 |
| max_precision | 0.4597 |
| max_recall | 1.0 |
| max_ap | 0.4604 |
sentence_0, sentence_1, and label| sentence_0 | sentence_1 | label | |
|---|---|---|---|
| type | string | string | int |
| details |
|
|
|
| sentence_0 | sentence_1 | label |
|---|---|---|
Khi nào William Caxton giới thiệu máy in ép vào nước Anh? |
Những đặc điểm mà độc giả của Shakespeare ngày nay có thể thấy kỳ quặc hay lỗi thời thường đại diện cho những nét đặc trưng của tiếng Anh trung Đại. |
0 |
Nhưng tôi không biết rằng tôi phải, " Dorcas do dự. |
Dorcas sợ phản ứng của họ. |
0 |
Đông Đức là tên gọi thường được sử dụng để chỉ quốc gia nào? |
Cộng hòa Dân chủ Đức (tiếng Đức: Deutsche Demokratische Republik, DDR; thường được gọi là Đông Đức) là một quốc gia nay không còn nữa, tồn tại từ 1949 đến 1990 theo định hướng xã hội chủ nghĩa tại phần phía đông nước Đức ngày nay. |
1 |
OnlineContrastiveLossnum_train_epochs: 2multi_dataset_batch_sampler: round_robinoverwrite_output_dir: Falsedo_predict: Falseeval_strategy: noprediction_loss_only: Trueper_device_train_batch_size: 8per_device_eval_batch_size: 8per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1num_train_epochs: 2max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Falsehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseeval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters: auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseeval_use_gather_object: Falsebatch_sampler: batch_samplermulti_dataset_batch_sampler: round_robin| Epoch | Step | Training Loss | max_ap |
|---|---|---|---|
| 0 | 0 | - | 0.5959 |
| 0.0087 | 500 | 0.3971 | - |
| 0.0173 | 1000 | 0.3353 | - |
| 0.0260 | 1500 | 0.4706 | - |
| 0.0347 | 2000 | 0.5002 | - |
| 0.0433 | 2500 | 0.4528 | - |
| 0.0520 | 3000 | 0.445 | - |
| 0.0607 | 3500 | 0.428 | - |
| 0.0693 | 4000 | 0.4305 | - |
| 0.0780 | 4500 | 0.4428 | - |
| 0.0866 | 5000 | 0.4358 | - |
| 0.0953 | 5500 | 0.4309 | - |
| 0.1040 | 6000 | 0.4221 | - |
| 0.1126 | 6500 | 0.4283 | - |
| 0.1213 | 7000 | 0.4218 | - |
| 0.1300 | 7500 | 0.4176 | - |
| 0.1386 | 8000 | 0.4227 | - |
| 0.1473 | 8500 | 0.4174 | - |
| 0.1560 | 9000 | 0.418 | - |
| 0.1646 | 9500 | 0.426 | - |
| 0.1733 | 10000 | 0.4213 | - |
| 0.1820 | 10500 | 0.4165 | - |
| 0.1906 | 11000 | 0.417 | - |
| 0.1993 | 11500 | 0.4262 | - |
| 0.2080 | 12000 | 0.4192 | - |
| 0.2166 | 12500 | 0.4162 | - |
| 0.2253 | 13000 | 0.4136 | - |
| 0.2340 | 13500 | 0.4037 | - |
| 0.2426 | 14000 | 0.4234 | - |
| 0.2513 | 14500 | 0.4225 | - |
| 0.2599 | 15000 | 0.4143 | - |
| 0.2686 | 15500 | 0.4178 | - |
| 0.2773 | 16000 | 0.4172 | - |
| 0.2859 | 16500 | 0.4305 | - |
| 0.2946 | 17000 | 0.4193 | - |
| 0.3033 | 17500 | 0.4144 | - |
| 0.3119 | 18000 | 0.4192 | - |
| 0.3206 | 18500 | 0.4172 | - |
| 0.3293 | 19000 | 0.4253 | - |
| 0.3379 | 19500 | 0.4211 | - |
| 0.3466 | 20000 | 0.4197 | - |
| 0.3553 | 20500 | 0.4219 | - |
| 0.3639 | 21000 | 0.4307 | - |
| 0.3726 | 21500 | 0.4332 | - |
| 0.3813 | 22000 | 0.4201 | - |
| 0.3899 | 22500 | 0.4273 | - |
| 0.3986 | 23000 | 0.4218 | - |
| 0.4073 | 23500 | 0.4279 | - |
| 0.4159 | 24000 | 0.4299 | - |
| 0.4246 | 24500 | 0.4289 | - |
| 0.4332 | 25000 | 0.416 | - |
| 0.4419 | 25500 | 0.3997 | - |
| 0.4506 | 26000 | 0.409 | - |
| 0.4592 | 26500 | 0.4133 | - |
| 0.4679 | 27000 | 0.4016 | - |
| 0.4766 | 27500 | 0.4117 | - |
| 0.4852 | 28000 | 0.4155 | - |
| 0.4939 | 28500 | 0.4117 | - |
| 0.5026 | 29000 | 0.4039 | - |
| 0.5112 | 29500 | 0.4087 | - |
| 0.5199 | 30000 | 0.4119 | - |
| 0.5286 | 30500 | 0.3948 | - |
| 0.5372 | 31000 | 0.4013 | - |
| 0.5459 | 31500 | 0.4175 | - |
| 0.5546 | 32000 | 0.4038 | - |
| 0.5632 | 32500 | 0.4058 | - |
| 0.5719 | 33000 | 0.4099 | - |
| 0.5805 | 33500 | 0.4117 | - |
| 0.5892 | 34000 | 0.4142 | - |
| 0.5979 | 34500 | 0.4049 | - |
| 0.6065 | 35000 | 0.4099 | - |
| 0.6152 | 35500 | 0.4121 | - |
| 0.6239 | 36000 | 0.4167 | - |
| 0.6325 | 36500 | 0.4138 | - |
| 0.6412 | 37000 | 0.4125 | - |
| 0.6499 | 37500 | 0.4043 | - |
| 0.6585 | 38000 | 0.4129 | - |
| 0.6672 | 38500 | 0.4079 | - |
| 0.6759 | 39000 | 0.3954 | - |
| 0.6845 | 39500 | 0.413 | - |
| 0.6932 | 40000 | 0.4079 | - |
| 0.7019 | 40500 | 0.4067 | - |
| 0.7105 | 41000 | 0.4251 | - |
| 0.7192 | 41500 | 0.4044 | - |
| 0.7279 | 42000 | 0.3919 | - |
| 0.7365 | 42500 | 0.4081 | - |
| 0.7452 | 43000 | 0.4141 | - |
| 0.7538 | 43500 | 0.4015 | - |
| 0.7625 | 44000 | 0.4139 | - |
| 0.7712 | 44500 | 0.408 | - |
| 0.7798 | 45000 | 0.4019 | - |
| 0.7885 | 45500 | 0.4127 | - |
| 0.7972 | 46000 | 0.4109 | - |
| 0.8058 | 46500 | 0.4045 | - |
| 0.8145 | 47000 | 0.4017 | - |
| 0.8232 | 47500 | 0.4108 | - |
| 0.8318 | 48000 | 0.4189 | - |
| 0.8405 | 48500 | 0.4127 | - |
| 0.8492 | 49000 | 0.4183 | - |
| 0.8578 | 49500 | 0.408 | - |
| 0.8665 | 50000 | 0.4091 | - |
| 0.8752 | 50500 | 0.412 | - |
| 0.8838 | 51000 | 0.4129 | - |
| 0.8925 | 51500 | 0.4175 | - |
| 0.9012 | 52000 | 0.4049 | - |
| 0.9098 | 52500 | 0.4047 | - |
| 0.9185 | 53000 | 0.4016 | - |
| 0.9271 | 53500 | 0.4088 | - |
| 0.9358 | 54000 | 0.4009 | - |
| 0.9445 | 54500 | 0.3996 | - |
| 0.9531 | 55000 | 0.4054 | - |
| 0.9618 | 55500 | 0.4115 | - |
| 0.9705 | 56000 | 0.4135 | - |
| 0.9791 | 56500 | 0.4041 | - |
| 0.9878 | 57000 | 0.4046 | - |
| 0.9965 | 57500 | 0.4063 | - |
| 1.0 | 57704 | - | 0.4615 |
| 1.0051 | 58000 | 0.4054 | - |
| 1.0138 | 58500 | 0.4017 | - |
| 1.0225 | 59000 | 0.417 | - |
| 1.0311 | 59500 | 0.4048 | - |
| 1.0398 | 60000 | 0.4007 | - |
| 1.0485 | 60500 | 0.4094 | - |
| 1.0571 | 61000 | 0.4068 | - |
| 1.0658 | 61500 | 0.4113 | - |
| 1.0744 | 62000 | 0.4022 | - |
| 1.0831 | 62500 | 0.4219 | - |
| 1.0918 | 63000 | 0.4149 | - |
| 1.1004 | 63500 | 0.399 | - |
| 1.1091 | 64000 | 0.4041 | - |
| 1.1178 | 64500 | 0.4023 | - |
| 1.1264 | 65000 | 0.4039 | - |
| 1.1351 | 65500 | 0.4024 | - |
| 1.1438 | 66000 | 0.4184 | - |
| 1.1524 | 66500 | 0.4104 | - |
| 1.1611 | 67000 | 0.4032 | - |
| 1.1698 | 67500 | 0.3958 | - |
| 1.1784 | 68000 | 0.4103 | - |
| 1.1871 | 68500 | 0.4105 | - |
| 1.1958 | 69000 | 0.4049 | - |
| 1.2044 | 69500 | 0.3995 | - |
| 1.2131 | 70000 | 0.4064 | - |
| 1.2218 | 70500 | 0.4135 | - |
| 1.2304 | 71000 | 0.3907 | - |
| 1.2391 | 71500 | 0.4037 | - |
| 1.2477 | 72000 | 0.4016 | - |
| 1.2564 | 72500 | 0.4124 | - |
| 1.2651 | 73000 | 0.4071 | - |
| 1.2737 | 73500 | 0.3965 | - |
| 1.2824 | 74000 | 0.4149 | - |
| 1.2911 | 74500 | 0.3985 | - |
| 1.2997 | 75000 | 0.3957 | - |
| 1.3084 | 75500 | 0.4043 | - |
| 1.3171 | 76000 | 0.411 | - |
| 1.3257 | 76500 | 0.4109 | - |
| 1.3344 | 77000 | 0.3968 | - |
| 1.3431 | 77500 | 0.4134 | - |
| 1.3517 | 78000 | 0.4057 | - |
| 1.3604 | 78500 | 0.4034 | - |
| 1.3691 | 79000 | 0.4057 | - |
| 1.3777 | 79500 | 0.3998 | - |
| 1.3864 | 80000 | 0.4002 | - |
| 1.3951 | 80500 | 0.396 | - |
| 1.4037 | 81000 | 0.4066 | - |
| 1.4124 | 81500 | 0.4073 | - |
| 1.4210 | 82000 | 0.3957 | - |
| 1.4297 | 82500 | 0.4012 | - |
| 1.4384 | 83000 | 0.4008 | - |
| 1.4470 | 83500 | 0.4055 | - |
| 1.4557 | 84000 | 0.409 | - |
| 1.4644 | 84500 | 0.4052 | - |
| 1.4730 | 85000 | 0.4128 | - |
| 1.4817 | 85500 | 0.4053 | - |
| 1.4904 | 86000 | 0.3979 | - |
| 1.4990 | 86500 | 0.4038 | - |
| 1.5077 | 87000 | 0.3987 | - |
| 1.5164 | 87500 | 0.4071 | - |
| 1.5250 | 88000 | 0.4042 | - |
| 1.5337 | 88500 | 0.4097 | - |
| 1.5424 | 89000 | 0.4044 | - |
| 1.5510 | 89500 | 0.4037 | - |
| 1.5597 | 90000 | 0.3992 | - |
| 1.5683 | 90500 | 0.4031 | - |
| 1.5770 | 91000 | 0.4037 | - |
| 1.5857 | 91500 | 0.4001 | - |
| 1.5943 | 92000 | 0.4069 | - |
| 1.6030 | 92500 | 0.4149 | - |
| 1.6117 | 93000 | 0.4091 | - |
| 1.6203 | 93500 | 0.3978 | - |
| 1.6290 | 94000 | 0.397 | - |
| 1.6377 | 94500 | 0.4063 | - |
| 1.6463 | 95000 | 0.4032 | - |
| 1.6550 | 95500 | 0.4146 | - |
| 1.6637 | 96000 | 0.407 | - |
| 1.6723 | 96500 | 0.4079 | - |
| 1.6810 | 97000 | 0.3991 | - |
| 1.6897 | 97500 | 0.4072 | - |
| 1.6983 | 98000 | 0.397 | - |
| 1.7070 | 98500 | 0.4033 | - |
| 1.7157 | 99000 | 0.412 | - |
| 1.7243 | 99500 | 0.3886 | - |
| 1.7330 | 100000 | 0.4026 | - |
| 1.7416 | 100500 | 0.3993 | - |
| 1.7503 | 101000 | 0.4078 | - |
| 1.7590 | 101500 | 0.3945 | - |
| 1.7676 | 102000 | 0.4029 | - |
| 1.7763 | 102500 | 0.4048 | - |
| 1.7850 | 103000 | 0.3994 | - |
| 1.7936 | 103500 | 0.4079 | - |
| 1.8023 | 104000 | 0.4146 | - |
| 1.8110 | 104500 | 0.4014 | - |
| 1.8196 | 105000 | 0.3942 | - |
| 1.8283 | 105500 | 0.4081 | - |
| 1.8370 | 106000 | 0.4016 | - |
| 1.8456 | 106500 | 0.4122 | - |
| 1.8543 | 107000 | 0.4078 | - |
| 1.8630 | 107500 | 0.4146 | - |
| 1.8716 | 108000 | 0.4029 | - |
| 1.8803 | 108500 | 0.4057 | - |
| 1.8890 | 109000 | 0.3994 | - |
| 1.8976 | 109500 | 0.3955 | - |
| 1.9063 | 110000 | 0.3997 | - |
| 1.9149 | 110500 | 0.3935 | - |
| 1.9236 | 111000 | 0.3942 | - |
| 1.9323 | 111500 | 0.3979 | - |
| 1.9409 | 112000 | 0.3996 | - |
| 1.9496 | 112500 | 0.4076 | - |
| 1.9583 | 113000 | 0.3971 | - |
| 1.9669 | 113500 | 0.4075 | - |
| 1.9756 | 114000 | 0.4028 | - |
| 1.9843 | 114500 | 0.4011 | - |
| 1.9929 | 115000 | 0.3929 | - |
| 2.0 | 115408 | - | 0.4604 |
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
Base model
uitnlp/CafeBERT