VLAI for CWE Guessing
Collection
A collection of models and datasets supporting the AI and NLP components of the Vulnerability-Lookup project, for CWE guessing.
•
9 items
•
Updated
•
2
This model is a fine-tuned version of roberta-base on the CIRCL/vulnerability-cwe-patch dataset.
The goal is to predict CWE categories from Git commit messages and vulnerability descriptions. Predicted child CWEs are mapped to their parent CWEs if applicable.
It achieves the following results on the evaluation set:
The following hyperparameters were used during training:
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Macro |
|---|---|---|---|---|---|
| 3.226 | 1.0 | 125 | 3.1362 | 0.0382 | 0.0035 |
| 3.0244 | 2.0 | 250 | 2.9390 | 0.2155 | 0.1215 |
| 2.589 | 3.0 | 375 | 2.3469 | 0.4141 | 0.2521 |
| 2.1614 | 4.0 | 500 | 2.0701 | 0.4355 | 0.2551 |
| 1.8396 | 5.0 | 625 | 1.9336 | 0.4467 | 0.2748 |
| 1.5698 | 6.0 | 750 | 1.9086 | 0.4905 | 0.2938 |
| 1.4142 | 7.0 | 875 | 1.7933 | 0.5174 | 0.3416 |
| 1.2292 | 8.0 | 1000 | 1.7510 | 0.5455 | 0.3776 |
| 1.1182 | 9.0 | 1125 | 1.7681 | 0.5713 | 0.3803 |
| 0.9924 | 10.0 | 1250 | 1.8151 | 0.6083 | 0.4059 |
| 0.9307 | 11.0 | 1375 | 1.8391 | 0.6218 | 0.4379 |
| 0.7875 | 12.0 | 1500 | 1.8065 | 0.6038 | 0.4048 |
| 0.6308 | 13.0 | 1625 | 1.9221 | 0.6409 | 0.4210 |
| 0.7327 | 14.0 | 1750 | 1.9986 | 0.6465 | 0.4775 |
| 0.5175 | 15.0 | 1875 | 2.0520 | 0.6644 | 0.4316 |
| 0.5302 | 16.0 | 2000 | 2.0989 | 0.6712 | 0.4528 |
| 0.38 | 17.0 | 2125 | 2.0826 | 0.6734 | 0.4669 |
| 0.3768 | 18.0 | 2250 | 2.1953 | 0.6611 | 0.4544 |
| 0.3653 | 19.0 | 2375 | 2.2217 | 0.6880 | 0.5000 |
| 0.3349 | 20.0 | 2500 | 2.1911 | 0.6880 | 0.4951 |
| 0.2563 | 21.0 | 2625 | 2.2999 | 0.6813 | 0.4771 |
| 0.2513 | 22.0 | 2750 | 2.4158 | 0.7037 | 0.4640 |
| 0.2154 | 23.0 | 2875 | 2.4323 | 0.7138 | 0.4689 |
| 0.1889 | 24.0 | 3000 | 2.4296 | 0.7037 | 0.4733 |
| 0.2042 | 25.0 | 3125 | 2.5223 | 0.7071 | 0.4411 |
| 0.1774 | 26.0 | 3250 | 2.5476 | 0.7037 | 0.5083 |
| 0.156 | 27.0 | 3375 | 2.5737 | 0.7205 | 0.5236 |
| 0.1406 | 28.0 | 3500 | 2.6518 | 0.7048 | 0.5220 |
| 0.144 | 29.0 | 3625 | 2.6388 | 0.7015 | 0.4789 |
| 0.1119 | 30.0 | 3750 | 2.7159 | 0.7228 | 0.5003 |
| 0.1187 | 31.0 | 3875 | 2.7170 | 0.7071 | 0.4973 |
| 0.1095 | 32.0 | 4000 | 2.7796 | 0.7160 | 0.4707 |
| 0.1082 | 33.0 | 4125 | 2.7926 | 0.7239 | 0.5038 |
| 0.0976 | 34.0 | 4250 | 2.8240 | 0.7149 | 0.4515 |
| 0.0885 | 35.0 | 4375 | 2.8532 | 0.7149 | 0.4466 |
| 0.0872 | 36.0 | 4500 | 2.8697 | 0.7183 | 0.4700 |
| 0.0795 | 37.0 | 4625 | 2.8467 | 0.7138 | 0.4994 |
| 0.0878 | 38.0 | 4750 | 2.8566 | 0.7104 | 0.4673 |
| 0.0886 | 39.0 | 4875 | 2.8951 | 0.7127 | 0.4667 |
| 0.086 | 40.0 | 5000 | 2.8841 | 0.7127 | 0.4683 |
Base model
FacebookAI/roberta-base