Upload all models and assets for ee (latest)
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +1 -0
- README.md +322 -134
- models/embeddings/aligned/ee_128d.bin +3 -0
- models/embeddings/aligned/ee_128d.meta.json +1 -0
- models/embeddings/aligned/ee_128d.projection.npy +3 -0
- models/embeddings/aligned/ee_128d_metadata.json +8 -0
- models/embeddings/aligned/ee_32d.bin +3 -0
- models/embeddings/aligned/ee_32d.meta.json +1 -0
- models/embeddings/aligned/ee_32d.projection.npy +3 -0
- models/embeddings/aligned/ee_32d_metadata.json +8 -0
- models/embeddings/aligned/ee_64d.bin +3 -0
- models/embeddings/aligned/ee_64d.meta.json +1 -0
- models/embeddings/aligned/ee_64d.projection.npy +3 -0
- models/embeddings/aligned/ee_64d_metadata.json +8 -0
- models/embeddings/monolingual/ee_128d.bin +2 -2
- models/embeddings/monolingual/ee_128d_metadata.json +5 -3
- models/embeddings/monolingual/ee_32d.bin +2 -2
- models/embeddings/monolingual/ee_32d_metadata.json +5 -3
- models/embeddings/monolingual/ee_64d.bin +2 -2
- models/embeddings/monolingual/ee_64d_metadata.json +5 -3
- models/subword_markov/ee_markov_ctx1_subword.parquet +2 -2
- models/subword_markov/ee_markov_ctx1_subword_metadata.json +2 -2
- models/subword_markov/ee_markov_ctx2_subword.parquet +2 -2
- models/subword_markov/ee_markov_ctx2_subword_metadata.json +2 -2
- models/subword_markov/ee_markov_ctx3_subword.parquet +2 -2
- models/subword_markov/ee_markov_ctx3_subword_metadata.json +2 -2
- models/subword_markov/ee_markov_ctx4_subword.parquet +2 -2
- models/subword_markov/ee_markov_ctx4_subword_metadata.json +2 -2
- models/subword_ngram/ee_2gram_subword.parquet +2 -2
- models/subword_ngram/ee_2gram_subword_metadata.json +2 -2
- models/subword_ngram/ee_3gram_subword.parquet +2 -2
- models/subword_ngram/ee_3gram_subword_metadata.json +2 -2
- models/subword_ngram/ee_4gram_subword.parquet +2 -2
- models/subword_ngram/ee_4gram_subword_metadata.json +2 -2
- models/subword_ngram/ee_5gram_subword.parquet +3 -0
- models/subword_ngram/ee_5gram_subword_metadata.json +7 -0
- models/tokenizer/ee_tokenizer_16k.model +2 -2
- models/tokenizer/ee_tokenizer_16k.vocab +0 -0
- models/tokenizer/ee_tokenizer_32k.model +2 -2
- models/tokenizer/ee_tokenizer_32k.vocab +0 -0
- models/tokenizer/ee_tokenizer_8k.model +2 -2
- models/tokenizer/ee_tokenizer_8k.vocab +0 -0
- models/vocabulary/ee_vocabulary.parquet +2 -2
- models/vocabulary/ee_vocabulary_metadata.json +10 -9
- models/word_markov/ee_markov_ctx1_word.parquet +2 -2
- models/word_markov/ee_markov_ctx1_word_metadata.json +2 -2
- models/word_markov/ee_markov_ctx2_word.parquet +2 -2
- models/word_markov/ee_markov_ctx2_word_metadata.json +2 -2
- models/word_markov/ee_markov_ctx3_word.parquet +2 -2
- models/word_markov/ee_markov_ctx3_word_metadata.json +2 -2
.gitattributes
CHANGED
|
@@ -39,3 +39,4 @@ visualizations/position_encoding_comparison.png filter=lfs diff=lfs merge=lfs -t
|
|
| 39 |
visualizations/tsne_sentences.png filter=lfs diff=lfs merge=lfs -text
|
| 40 |
visualizations/tsne_words.png filter=lfs diff=lfs merge=lfs -text
|
| 41 |
visualizations/zipf_law.png filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 39 |
visualizations/tsne_sentences.png filter=lfs diff=lfs merge=lfs -text
|
| 40 |
visualizations/tsne_words.png filter=lfs diff=lfs merge=lfs -text
|
| 41 |
visualizations/zipf_law.png filter=lfs diff=lfs merge=lfs -text
|
| 42 |
+
visualizations/embedding_tsne_multilingual.png filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
---
|
| 2 |
language: ee
|
| 3 |
-
language_name:
|
| 4 |
language_family: atlantic_kwa
|
| 5 |
tags:
|
| 6 |
- wikilangs
|
|
@@ -10,11 +10,21 @@ tags:
|
|
| 10 |
- n-gram
|
| 11 |
- markov
|
| 12 |
- wikipedia
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
- monolingual
|
| 14 |
- family-atlantic_kwa
|
| 15 |
license: mit
|
| 16 |
library_name: wikilangs
|
| 17 |
-
pipeline_tag:
|
| 18 |
datasets:
|
| 19 |
- omarkamali/wikipedia-monthly
|
| 20 |
dataset_info:
|
|
@@ -23,20 +33,20 @@ dataset_info:
|
|
| 23 |
metrics:
|
| 24 |
- name: best_compression_ratio
|
| 25 |
type: compression
|
| 26 |
-
value: 4.
|
| 27 |
- name: best_isotropy
|
| 28 |
type: isotropy
|
| 29 |
-
value: 0.
|
| 30 |
- name: vocabulary_size
|
| 31 |
type: vocab
|
| 32 |
-
value:
|
| 33 |
-
generated:
|
| 34 |
---
|
| 35 |
|
| 36 |
-
#
|
| 37 |
## Comprehensive Research Report & Full Ablation Study
|
| 38 |
|
| 39 |
-
This repository contains NLP models trained and evaluated by Wikilangs, specifically on **
|
| 40 |
We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings.
|
| 41 |
|
| 42 |
## 📋 Repository Contents
|
|
@@ -44,12 +54,13 @@ We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and
|
|
| 44 |
### Models & Assets
|
| 45 |
|
| 46 |
- Tokenizers (8k, 16k, 32k, 64k)
|
| 47 |
-
- N-gram models (2, 3, 4-gram)
|
| 48 |
-
- Markov chains (context of 1, 2, 3 and
|
| 49 |
- Subword N-gram and Markov chains
|
| 50 |
-
- Embeddings in various sizes and dimensions
|
| 51 |
- Language Vocabulary
|
| 52 |
- Language Statistics
|
|
|
|
| 53 |

|
| 54 |
|
| 55 |
### Analysis and Evaluation
|
|
@@ -59,7 +70,8 @@ We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and
|
|
| 59 |
- [3. Markov Chain Evaluation](#3-markov-chain-evaluation)
|
| 60 |
- [4. Vocabulary Analysis](#4-vocabulary-analysis)
|
| 61 |
- [5. Word Embeddings Evaluation](#5-word-embeddings-evaluation)
|
| 62 |
-
- [6.
|
|
|
|
| 63 |
- [Metrics Glossary](#appendix-metrics-glossary--interpretation-guide)
|
| 64 |
- [Visualizations Index](#visualizations-index)
|
| 65 |
|
|
@@ -68,55 +80,53 @@ We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and
|
|
| 68 |
|
| 69 |

|
| 70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
### Results
|
| 72 |
|
| 73 |
| Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens |
|
| 74 |
|------------|-------------|---------------|----------|--------------|
|
| 75 |
-
| **8k** | 3.
|
| 76 |
-
| **16k** |
|
| 77 |
-
| **32k** |
|
| 78 |
-
| **64k** | 4.014x 🏆 | 3.97 | 0.2285% | 162,807 |
|
| 79 |
|
| 80 |
### Tokenization Examples
|
| 81 |
|
| 82 |
Below are sample sentences tokenized with each vocabulary size:
|
| 83 |
|
| 84 |
-
**Sample 1:**
|
| 85 |
|
| 86 |
| Vocab | Tokens | Count |
|
| 87 |
|-------|--------|-------|
|
| 88 |
-
| 8k | `▁
|
| 89 |
-
| 16k |
|
| 90 |
-
| 32k |
|
| 91 |
-
| 64k | `▁ũ , ▁ũ ▁— ▁nye ▁kikuyutɔwo ▁ƒe ▁nya ▁alfabet .` | 10 |
|
| 92 |
-
|
| 93 |
-
**Sample 2:** `Hong Kong nye Asia dukɔwo dometɔ ɖeka.
|
| 94 |
|
| 95 |
-
|
| 96 |
|
| 97 |
| Vocab | Tokens | Count |
|
| 98 |
|-------|--------|-------|
|
| 99 |
-
| 8k | `▁
|
| 100 |
-
| 16k | `▁
|
| 101 |
-
| 32k | `▁
|
| 102 |
-
| 64k | `▁hong ▁kong ▁nye ▁asia ▁dukɔwo ▁dometɔ ▁ɖeka . ▁category : ... (+1 more)` | 11 |
|
| 103 |
|
| 104 |
-
**Sample 3:** `
|
| 105 |
-
|
| 106 |
-
...`
|
| 107 |
|
| 108 |
| Vocab | Tokens | Count |
|
| 109 |
|-------|--------|-------|
|
| 110 |
-
| 8k | `▁
|
| 111 |
-
| 16k | `▁
|
| 112 |
-
| 32k | `▁
|
| 113 |
-
| 64k | `▁oslo ▁nye ▁norway ▁dugã ▁enye . ▁eƒe ▁dukɔmenɔlawo ▁ƒe ▁xexlẽme ... (+26 more)` | 36 |
|
| 114 |
|
| 115 |
|
| 116 |
### Key Findings
|
| 117 |
|
| 118 |
-
- **Best Compression:**
|
| 119 |
-
- **Lowest UNK Rate:** 8k with 0.
|
| 120 |
- **Trade-off:** Larger vocabularies improve compression but increase model size
|
| 121 |
- **Recommendation:** 32k vocabulary provides optimal balance for production use
|
| 122 |
|
|
@@ -125,57 +135,111 @@ Category:China`
|
|
| 125 |
|
| 126 |

|
| 127 |
|
|
|
|
|
|
|
| 128 |

|
| 129 |
|
| 130 |
### Results
|
| 131 |
|
| 132 |
-
| N-gram | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage |
|
| 133 |
-
|
| 134 |
-
| **2-gram** | 3,
|
| 135 |
-
| **2-gram** |
|
| 136 |
-
| **3-gram** |
|
| 137 |
-
| **3-gram** |
|
| 138 |
-
| **4-gram** |
|
| 139 |
-
| **4-gram** |
|
|
|
|
|
|
|
| 140 |
|
| 141 |
### Top 5 N-grams by Size
|
| 142 |
|
| 143 |
-
**2-grams:**
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 144 |
|
| 145 |
| Rank | N-gram | Count |
|
| 146 |
|------|--------|-------|
|
| 147 |
-
| 1 | `
|
| 148 |
-
| 2 |
|
| 149 |
-
| 3 | `
|
| 150 |
-
| 4 | `
|
| 151 |
-
| 5 | `
|
| 152 |
|
| 153 |
-
**
|
| 154 |
|
| 155 |
| Rank | N-gram | Count |
|
| 156 |
|------|--------|-------|
|
| 157 |
-
| 1 | `me la
|
| 158 |
-
| 2 |
|
| 159 |
-
| 3 |
|
| 160 |
-
| 4 |
|
| 161 |
-
| 5 | `
|
| 162 |
|
| 163 |
-
**
|
| 164 |
|
| 165 |
| Rank | N-gram | Count |
|
| 166 |
|------|--------|-------|
|
| 167 |
-
| 1 | `
|
| 168 |
-
| 2 |
|
| 169 |
-
| 3 |
|
| 170 |
-
| 4 |
|
| 171 |
-
| 5 | `
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 172 |
|
| 173 |
|
| 174 |
### Key Findings
|
| 175 |
|
| 176 |
-
- **Best Perplexity:** 2-gram with
|
| 177 |
- **Entropy Trend:** Decreases with larger n-grams (more predictable)
|
| 178 |
-
- **Coverage:** Top-1000 patterns cover ~
|
| 179 |
- **Recommendation:** 4-gram or 5-gram for best predictive performance
|
| 180 |
|
| 181 |
---
|
|
@@ -183,55 +247,86 @@ Category:China`
|
|
| 183 |
|
| 184 |

|
| 185 |
|
|
|
|
|
|
|
| 186 |

|
| 187 |
|
| 188 |
### Results
|
| 189 |
|
| 190 |
-
| Context | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability |
|
| 191 |
-
|
| 192 |
-
| **1** | 0.
|
| 193 |
-
| **1** | 1.
|
| 194 |
-
| **2** | 0.
|
| 195 |
-
| **2** | 1.
|
| 196 |
-
| **3** | 0.
|
| 197 |
-
| **3** | 0.
|
| 198 |
-
| **4** | 0.
|
| 199 |
-
| **4** | 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 200 |
|
| 201 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 202 |
|
| 203 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 204 |
|
| 205 |
**Context Size 1:**
|
| 206 |
|
| 207 |
-
1.
|
| 208 |
-
2.
|
| 209 |
-
3.
|
| 210 |
|
| 211 |
**Context Size 2:**
|
| 212 |
|
| 213 |
-
1. `
|
| 214 |
-
2. `
|
| 215 |
-
3. `
|
| 216 |
|
| 217 |
**Context Size 3:**
|
| 218 |
|
| 219 |
-
1.
|
| 220 |
-
2.
|
| 221 |
-
3.
|
| 222 |
|
| 223 |
**Context Size 4:**
|
| 224 |
|
| 225 |
-
1. `
|
| 226 |
-
2.
|
| 227 |
-
3.
|
| 228 |
|
| 229 |
|
| 230 |
### Key Findings
|
| 231 |
|
| 232 |
-
- **Best Predictability:** Context-4 with
|
| 233 |
- **Branching Factor:** Decreases with context size (more deterministic)
|
| 234 |
-
- **Memory Trade-off:** Larger contexts require more storage (
|
| 235 |
- **Recommendation:** Context-3 or Context-4 for text generation
|
| 236 |
|
| 237 |
---
|
|
@@ -247,35 +342,35 @@ Below are text samples generated from each Markov chain model:
|
|
| 247 |
|
| 248 |
| Metric | Value |
|
| 249 |
|--------|-------|
|
| 250 |
-
| Vocabulary Size |
|
| 251 |
-
| Total Tokens |
|
| 252 |
-
| Mean Frequency | 22.
|
| 253 |
-
| Median Frequency |
|
| 254 |
-
| Frequency Std Dev |
|
| 255 |
|
| 256 |
### Most Common Words
|
| 257 |
|
| 258 |
| Rank | Word | Frequency |
|
| 259 |
|------|------|-----------|
|
| 260 |
-
| 1 | ƒe |
|
| 261 |
-
| 2 | le | 14,
|
| 262 |
| 3 | me | 8,468 |
|
| 263 |
-
| 4 | si | 6,
|
| 264 |
-
| 5 | la | 4,
|
| 265 |
-
| 6 | kple | 4,
|
| 266 |
-
| 7 |
|
| 267 |
-
| 8 |
|
| 268 |
-
| 9 | ɖe | 3,
|
| 269 |
| 10 | siwo | 2,545 |
|
| 270 |
|
| 271 |
### Least Common Words (from vocabulary)
|
| 272 |
|
| 273 |
| Rank | Word | Frequency |
|
| 274 |
|------|------|-----------|
|
| 275 |
-
| 1 |
|
| 276 |
-
| 2 |
|
| 277 |
-
| 3 |
|
| 278 |
-
| 4 |
|
| 279 |
| 5 | klottey | 2 |
|
| 280 |
| 6 | korle | 2 |
|
| 281 |
| 7 | domelovo | 2 |
|
|
@@ -287,24 +382,24 @@ Below are text samples generated from each Markov chain model:
|
|
| 287 |
|
| 288 |
| Metric | Value |
|
| 289 |
|--------|-------|
|
| 290 |
-
| Zipf Coefficient | 1.
|
| 291 |
-
| R² (Goodness of Fit) | 0.
|
| 292 |
| Adherence Quality | **excellent** |
|
| 293 |
|
| 294 |
### Coverage Analysis
|
| 295 |
|
| 296 |
| Top N Words | Coverage |
|
| 297 |
|-------------|----------|
|
| 298 |
-
| Top 100 |
|
| 299 |
-
| Top 1,000 |
|
| 300 |
-
| Top 5,000 | 93.
|
| 301 |
-
| Top 10,000 | 98.
|
| 302 |
|
| 303 |
### Key Findings
|
| 304 |
|
| 305 |
-
- **Zipf Compliance:** R²=0.
|
| 306 |
-
- **High Frequency Dominance:** Top 100 words cover
|
| 307 |
-
- **Long Tail:**
|
| 308 |
|
| 309 |
---
|
| 310 |
## 5. Word Embeddings Evaluation
|
|
@@ -317,24 +412,114 @@ Below are text samples generated from each Markov chain model:
|
|
| 317 |
|
| 318 |

|
| 319 |
|
| 320 |
-
### Model Comparison
|
| 321 |
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 328 |
|
| 329 |
### Key Findings
|
| 330 |
|
| 331 |
-
- **Best Isotropy:** mono_32d with 0.
|
| 332 |
-
- **
|
| 333 |
-
- **
|
| 334 |
-
- **Recommendation:**
|
| 335 |
|
| 336 |
---
|
| 337 |
-
## 6.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 338 |
|
| 339 |

|
| 340 |
|
|
@@ -342,11 +527,12 @@ Below are text samples generated from each Markov chain model:
|
|
| 342 |
|
| 343 |
| Component | Recommended | Rationale |
|
| 344 |
|-----------|-------------|-----------|
|
| 345 |
-
| Tokenizer | **32k BPE** | Best compression (4.
|
| 346 |
-
| N-gram | **
|
| 347 |
-
| Markov | **Context-4** | Highest predictability (
|
| 348 |
| Embeddings | **100d** | Balanced semantic capture and isotropy |
|
| 349 |
|
|
|
|
| 350 |
---
|
| 351 |
## Appendix: Metrics Glossary & Interpretation Guide
|
| 352 |
|
|
@@ -536,7 +722,8 @@ If you use these models in your research, please cite:
|
|
| 536 |
author = {Kamali, Omar},
|
| 537 |
title = {Wikilangs: Open NLP Models for Wikipedia Languages},
|
| 538 |
year = {2025},
|
| 539 |
-
|
|
|
|
| 540 |
url = {https://huggingface.co/wikilangs}
|
| 541 |
institution = {Omneity Labs}
|
| 542 |
}
|
|
@@ -552,7 +739,8 @@ MIT License - Free for academic and commercial use.
|
|
| 552 |
- 🤗 Models: [huggingface.co/wikilangs](https://huggingface.co/wikilangs)
|
| 553 |
- 📊 Data: [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly)
|
| 554 |
- 👤 Author: [Omar Kamali](https://huggingface.co/omarkamali)
|
|
|
|
| 555 |
---
|
| 556 |
*Generated by Wikilangs Models Pipeline*
|
| 557 |
|
| 558 |
-
*Report Date:
|
|
|
|
| 1 |
---
|
| 2 |
language: ee
|
| 3 |
+
language_name: Ewe
|
| 4 |
language_family: atlantic_kwa
|
| 5 |
tags:
|
| 6 |
- wikilangs
|
|
|
|
| 10 |
- n-gram
|
| 11 |
- markov
|
| 12 |
- wikipedia
|
| 13 |
+
- feature-extraction
|
| 14 |
+
- sentence-similarity
|
| 15 |
+
- tokenization
|
| 16 |
+
- n-grams
|
| 17 |
+
- markov-chain
|
| 18 |
+
- text-mining
|
| 19 |
+
- fasttext
|
| 20 |
+
- babelvec
|
| 21 |
+
- vocabulous
|
| 22 |
+
- vocabulary
|
| 23 |
- monolingual
|
| 24 |
- family-atlantic_kwa
|
| 25 |
license: mit
|
| 26 |
library_name: wikilangs
|
| 27 |
+
pipeline_tag: text-generation
|
| 28 |
datasets:
|
| 29 |
- omarkamali/wikipedia-monthly
|
| 30 |
dataset_info:
|
|
|
|
| 33 |
metrics:
|
| 34 |
- name: best_compression_ratio
|
| 35 |
type: compression
|
| 36 |
+
value: 4.309
|
| 37 |
- name: best_isotropy
|
| 38 |
type: isotropy
|
| 39 |
+
value: 0.7155
|
| 40 |
- name: vocabulary_size
|
| 41 |
type: vocab
|
| 42 |
+
value: 0
|
| 43 |
+
generated: 2026-01-04
|
| 44 |
---
|
| 45 |
|
| 46 |
+
# Ewe - Wikilangs Models
|
| 47 |
## Comprehensive Research Report & Full Ablation Study
|
| 48 |
|
| 49 |
+
This repository contains NLP models trained and evaluated by Wikilangs, specifically on **Ewe** Wikipedia data.
|
| 50 |
We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings.
|
| 51 |
|
| 52 |
## 📋 Repository Contents
|
|
|
|
| 54 |
### Models & Assets
|
| 55 |
|
| 56 |
- Tokenizers (8k, 16k, 32k, 64k)
|
| 57 |
+
- N-gram models (2, 3, 4, 5-gram)
|
| 58 |
+
- Markov chains (context of 1, 2, 3, 4 and 5)
|
| 59 |
- Subword N-gram and Markov chains
|
| 60 |
+
- Embeddings in various sizes and dimensions (aligned and unaligned)
|
| 61 |
- Language Vocabulary
|
| 62 |
- Language Statistics
|
| 63 |
+
|
| 64 |

|
| 65 |
|
| 66 |
### Analysis and Evaluation
|
|
|
|
| 70 |
- [3. Markov Chain Evaluation](#3-markov-chain-evaluation)
|
| 71 |
- [4. Vocabulary Analysis](#4-vocabulary-analysis)
|
| 72 |
- [5. Word Embeddings Evaluation](#5-word-embeddings-evaluation)
|
| 73 |
+
- [6. Morphological Analysis (Experimental)](#6--morphological-analysis-experimental)
|
| 74 |
+
- [7. Summary & Recommendations](#7-summary--recommendations)
|
| 75 |
- [Metrics Glossary](#appendix-metrics-glossary--interpretation-guide)
|
| 76 |
- [Visualizations Index](#visualizations-index)
|
| 77 |
|
|
|
|
| 80 |
|
| 81 |

|
| 82 |
|
| 83 |
+

|
| 84 |
+
|
| 85 |
+

|
| 86 |
+
|
| 87 |
+

|
| 88 |
+
|
| 89 |
### Results
|
| 90 |
|
| 91 |
| Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens |
|
| 92 |
|------------|-------------|---------------|----------|--------------|
|
| 93 |
+
| **8k** | 3.822x | 3.83 | 0.5658% | 181,329 |
|
| 94 |
+
| **16k** | 4.082x | 4.09 | 0.6044% | 169,762 |
|
| 95 |
+
| **32k** | 4.309x 🏆 | 4.31 | 0.6380% | 160,824 |
|
|
|
|
| 96 |
|
| 97 |
### Tokenization Examples
|
| 98 |
|
| 99 |
Below are sample sentences tokenized with each vocabulary size:
|
| 100 |
|
| 101 |
+
**Sample 1:** `Ata Messan Ajavon Zeus nye Togo dunyahela, eye wònye Save Togo Collective ƒe zim...`
|
| 102 |
|
| 103 |
| Vocab | Tokens | Count |
|
| 104 |
|-------|--------|-------|
|
| 105 |
+
| 8k | `▁ata ▁me ssan ▁aja von ▁ze us ▁nye ▁togo ▁dunyahela ... (+18 more)` | 28 |
|
| 106 |
+
| 16k | `▁ata ▁messan ▁ajavon ▁ze us ▁nye ▁togo ▁dunyahela , ▁eye ... (+15 more)` | 25 |
|
| 107 |
+
| 32k | `▁ata ▁messan ▁ajavon ▁zeus ▁nye ▁togo ▁dunyahela , ▁eye ▁wònye ... (+13 more)` | 23 |
|
|
|
|
|
|
|
|
|
|
| 108 |
|
| 109 |
+
**Sample 2:** `South Carolina nye dukɔ aɖe le United States. States`
|
| 110 |
|
| 111 |
| Vocab | Tokens | Count |
|
| 112 |
|-------|--------|-------|
|
| 113 |
+
| 8k | `▁south ▁caro lina ▁nye ▁dukɔ ▁aɖe ▁le ▁united ▁states . ... (+1 more)` | 11 |
|
| 114 |
+
| 16k | `▁south ▁carolina ▁nye ▁dukɔ ▁aɖe ▁le ▁united ▁states . ▁states` | 10 |
|
| 115 |
+
| 32k | `▁south ▁carolina ▁nye ▁dukɔ ▁aɖe ▁le ▁united ▁states . ▁states` | 10 |
|
|
|
|
| 116 |
|
| 117 |
+
**Sample 3:** `GbɔeviAziaku, Vincent Erskine. A Linguistic Analysis of Ewe Animal Names among t...`
|
|
|
|
|
|
|
| 118 |
|
| 119 |
| Vocab | Tokens | Count |
|
| 120 |
|-------|--------|-------|
|
| 121 |
+
| 8k | `▁gbɔe viaziaku , ▁vincent ▁erskine . ▁a ▁linguistic ▁analysis ▁of ... (+19 more)` | 29 |
|
| 122 |
+
| 16k | `▁gbɔe viaziaku , ▁vincent ▁erskine . ▁a ▁linguistic ▁analysis ▁of ... (+19 more)` | 29 |
|
| 123 |
+
| 32k | `▁gbɔeviaziaku , ▁vincent ▁erskine . ▁a ▁linguistic ▁analysis ▁of ▁ewe ... (+18 more)` | 28 |
|
|
|
|
| 124 |
|
| 125 |
|
| 126 |
### Key Findings
|
| 127 |
|
| 128 |
+
- **Best Compression:** 32k achieves 4.309x compression
|
| 129 |
+
- **Lowest UNK Rate:** 8k with 0.5658% unknown tokens
|
| 130 |
- **Trade-off:** Larger vocabularies improve compression but increase model size
|
| 131 |
- **Recommendation:** 32k vocabulary provides optimal balance for production use
|
| 132 |
|
|
|
|
| 135 |
|
| 136 |

|
| 137 |
|
| 138 |
+

|
| 139 |
+
|
| 140 |

|
| 141 |
|
| 142 |
### Results
|
| 143 |
|
| 144 |
+
| N-gram | Variant | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage |
|
| 145 |
+
|--------|---------|------------|---------|----------------|------------------|-------------------|
|
| 146 |
+
| **2-gram** | Word | 3,050 | 11.57 | 7,157 | 23.6% | 56.9% |
|
| 147 |
+
| **2-gram** | Subword | 259 🏆 | 8.02 | 1,996 | 66.4% | 99.2% |
|
| 148 |
+
| **3-gram** | Word | 4,032 | 11.98 | 8,747 | 22.9% | 48.1% |
|
| 149 |
+
| **3-gram** | Subword | 1,781 | 10.80 | 12,826 | 32.5% | 74.7% |
|
| 150 |
+
| **4-gram** | Word | 6,737 | 12.72 | 13,766 | 19.8% | 37.5% |
|
| 151 |
+
| **4-gram** | Subword | 7,506 | 12.87 | 51,628 | 17.9% | 48.5% |
|
| 152 |
+
| **5-gram** | Word | 4,126 | 12.01 | 8,899 | 24.0% | 42.0% |
|
| 153 |
+
| **5-gram** | Subword | 18,211 | 14.15 | 94,077 | 11.1% | 34.7% |
|
| 154 |
|
| 155 |
### Top 5 N-grams by Size
|
| 156 |
|
| 157 |
+
**2-grams (Word):**
|
| 158 |
+
|
| 159 |
+
| Rank | N-gram | Count |
|
| 160 |
+
|------|--------|-------|
|
| 161 |
+
| 1 | `le ƒe` | 2,279 |
|
| 162 |
+
| 2 | `ƒe me` | 1,784 |
|
| 163 |
+
| 3 | `me la` | 1,442 |
|
| 164 |
+
| 4 | `me le` | 1,115 |
|
| 165 |
+
| 5 | `si nye` | 1,012 |
|
| 166 |
+
|
| 167 |
+
**3-grams (Word):**
|
| 168 |
|
| 169 |
| Rank | N-gram | Count |
|
| 170 |
|------|--------|-------|
|
| 171 |
+
| 1 | `le ƒe me` | 1,460 |
|
| 172 |
+
| 2 | `ƒe me la` | 652 |
|
| 173 |
+
| 3 | `va ɖo ƒe` | 327 |
|
| 174 |
+
| 4 | `ƒe va ɖo` | 319 |
|
| 175 |
+
| 5 | `tso ƒe va` | 311 |
|
| 176 |
|
| 177 |
+
**4-grams (Word):**
|
| 178 |
|
| 179 |
| Rank | N-gram | Count |
|
| 180 |
|------|--------|-------|
|
| 181 |
+
| 1 | `le ƒe me la` | 540 |
|
| 182 |
+
| 2 | `ƒe va ɖo ƒe` | 316 |
|
| 183 |
+
| 3 | `tso ƒe va ɖo` | 302 |
|
| 184 |
+
| 4 | `vincent erskine a linguistic` | 256 |
|
| 185 |
+
| 5 | `erskine a linguistic analysis` | 256 |
|
| 186 |
|
| 187 |
+
**5-grams (Word):**
|
| 188 |
|
| 189 |
| Rank | N-gram | Count |
|
| 190 |
|------|--------|-------|
|
| 191 |
+
| 1 | `tso ƒe va ɖo ƒe` | 300 |
|
| 192 |
+
| 2 | `linguistic analysis of ewe animal` | 256 |
|
| 193 |
+
| 3 | `analysis of ewe animal names` | 256 |
|
| 194 |
+
| 4 | `of ewe animal names among` | 256 |
|
| 195 |
+
| 5 | `ewe animal names among the` | 256 |
|
| 196 |
+
|
| 197 |
+
**2-grams (Subword):**
|
| 198 |
+
|
| 199 |
+
| Rank | N-gram | Count |
|
| 200 |
+
|------|--------|-------|
|
| 201 |
+
| 1 | `e _` | 93,022 |
|
| 202 |
+
| 2 | `a _` | 32,972 |
|
| 203 |
+
| 3 | `o _` | 26,746 |
|
| 204 |
+
| 4 | `w o` | 25,054 |
|
| 205 |
+
| 5 | `_ a` | 23,819 |
|
| 206 |
+
|
| 207 |
+
**3-grams (Subword):**
|
| 208 |
+
|
| 209 |
+
| Rank | N-gram | Count |
|
| 210 |
+
|------|--------|-------|
|
| 211 |
+
| 1 | `ƒ e _` | 21,210 |
|
| 212 |
+
| 2 | `l e _` | 20,474 |
|
| 213 |
+
| 3 | `_ ƒ e` | 16,656 |
|
| 214 |
+
| 4 | `w o _` | 15,423 |
|
| 215 |
+
| 5 | `_ l e` | 14,771 |
|
| 216 |
+
|
| 217 |
+
**4-grams (Subword):**
|
| 218 |
+
|
| 219 |
+
| Rank | N-gram | Count |
|
| 220 |
+
|------|--------|-------|
|
| 221 |
+
| 1 | `_ ƒ e _` | 16,518 |
|
| 222 |
+
| 2 | `_ l e _` | 14,241 |
|
| 223 |
+
| 3 | `n y e _` | 6,181 |
|
| 224 |
+
| 4 | `_ s i _` | 6,094 |
|
| 225 |
+
| 5 | `_ m e _` | 5,720 |
|
| 226 |
+
|
| 227 |
+
**5-grams (Subword):**
|
| 228 |
+
|
| 229 |
+
| Rank | N-gram | Count |
|
| 230 |
+
|------|--------|-------|
|
| 231 |
+
| 1 | `k p l e _` | 4,986 |
|
| 232 |
+
| 2 | `_ k p l e` | 4,841 |
|
| 233 |
+
| 3 | `o _ ƒ e _` | 4,832 |
|
| 234 |
+
| 4 | `e _ ƒ e _` | 4,358 |
|
| 235 |
+
| 5 | `_ n y e _` | 3,640 |
|
| 236 |
|
| 237 |
|
| 238 |
### Key Findings
|
| 239 |
|
| 240 |
+
- **Best Perplexity:** 2-gram (subword) with 259
|
| 241 |
- **Entropy Trend:** Decreases with larger n-grams (more predictable)
|
| 242 |
+
- **Coverage:** Top-1000 patterns cover ~35% of corpus
|
| 243 |
- **Recommendation:** 4-gram or 5-gram for best predictive performance
|
| 244 |
|
| 245 |
---
|
|
|
|
| 247 |
|
| 248 |

|
| 249 |
|
| 250 |
+

|
| 251 |
+
|
| 252 |

|
| 253 |
|
| 254 |
### Results
|
| 255 |
|
| 256 |
+
| Context | Variant | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability |
|
| 257 |
+
|---------|---------|-------------|------------|------------------|-----------------|----------------|
|
| 258 |
+
| **1** | Word | 0.7631 | 1.697 | 4.67 | 25,800 | 23.7% |
|
| 259 |
+
| **1** | Subword | 1.5369 | 2.902 | 11.32 | 389 | 0.0% |
|
| 260 |
+
| **2** | Word | 0.2897 | 1.222 | 1.68 | 120,194 | 71.0% |
|
| 261 |
+
| **2** | Subword | 1.0150 | 2.021 | 5.66 | 4,399 | 0.0% |
|
| 262 |
+
| **3** | Word | 0.1029 | 1.074 | 1.17 | 201,432 | 89.7% |
|
| 263 |
+
| **3** | Subword | 0.7954 | 1.736 | 3.60 | 24,892 | 20.5% |
|
| 264 |
+
| **4** | Word | 0.0390 🏆 | 1.027 | 1.06 | 235,375 | 96.1% |
|
| 265 |
+
| **4** | Subword | 0.5399 | 1.454 | 2.27 | 89,556 | 46.0% |
|
| 266 |
+
|
| 267 |
+
### Generated Text Samples (Word-based)
|
| 268 |
+
|
| 269 |
+
Below are text samples generated from each word-based Markov chain model:
|
| 270 |
+
|
| 271 |
+
**Context Size 1:**
|
| 272 |
+
|
| 273 |
+
1. `ƒe sewɔtakpekpea me le berlin takpekpea me manya alesi wòhiã be yeƒe dukɔa ƒe dunyahehewo ƒe`
|
| 274 |
+
2. `le ho ʋlim le dukplɔla ƒe ɖoɖo aɖe ƒe bisiɔp gbãtɔ kple dzoɖagbe kple nubablawo gɔmee`
|
| 275 |
+
3. `me nuzazãwo kple la ŋkoe nye eƒe sukudede dzɔdzɔmeŋutinunya ƒe nuwɔna me be wòanye nutala afia`
|
| 276 |
+
|
| 277 |
+
**Context Size 2:**
|
| 278 |
+
|
| 279 |
+
1. `le ƒe me eye wòtso bole le savanna nutome wodzi mahama le november 28 dzi le guadeloupe`
|
| 280 |
+
2. `ƒe me emegbe exɔ ɖɔkta ƒe dzeside adre kple afã tso dukɔ yome me le south africa`
|
| 281 |
+
3. `me la gold coast le tedoxe 26 dzi kple agbalẽtamɔ̃ gãwo siaa me wotsɔ nya ɖe ame`
|
| 282 |
+
|
| 283 |
+
**Context Size 3:**
|
| 284 |
|
| 285 |
+
1. `le ƒe me eye archdeacon le ƒe enye sinima gbãtɔ si woɖe le ƒe me eye wòka atam`
|
| 286 |
+
2. `ƒe me la eɖe eme be mefia be wò agbe mele vevie o 11 koe gblɔ be ameyibɔwo`
|
| 287 |
+
3. `va ɖo ƒe dome defontaine ku le hénin sur cojeul ƒe dumegã le ƒe va ɖo ƒe le`
|
| 288 |
+
|
| 289 |
+
**Context Size 4:**
|
| 290 |
|
| 291 |
+
1. `le ƒe me la enye europa dukɔwo ƒe habɔbɔ me eƒe zimenɔla si woti le ƒe me lae nye`
|
| 292 |
+
2. `ƒe va ɖo ƒe tso ƒe va ɖo ƒe dɔmedzoedonamea xɔ ƒe eve agbalẽa me tɔ vevitɔe nye dɔwɔhawo`
|
| 293 |
+
3. `tso ƒe va ɖo ƒe enɔ pyrénées atlantiques dɔwɔƒea teƒe grenet nye radical party me tɔ enye orléans ƒe`
|
| 294 |
+
|
| 295 |
+
|
| 296 |
+
### Generated Text Samples (Subword-based)
|
| 297 |
+
|
| 298 |
+
Below are text samples generated from each subword-based Markov chain model:
|
| 299 |
|
| 300 |
**Context Size 1:**
|
| 301 |
|
| 302 |
+
1. `_aƒe_aɖena_(_na_`
|
| 303 |
+
2. `e_dzu_alaxa_etsi`
|
| 304 |
+
3. `ameɖonye_si_d_ye`
|
| 305 |
|
| 306 |
**Context Size 2:**
|
| 307 |
|
| 308 |
+
1. `e_la_nyations_me_`
|
| 309 |
+
2. `a_culymmakple_du_`
|
| 310 |
+
3. `o_frafia_ƒe_a._me`
|
| 311 |
|
| 312 |
**Context Size 3:**
|
| 313 |
|
| 314 |
+
1. `ƒe_3,_dzɔ_dome_ŋgɔ`
|
| 315 |
+
2. `le_ta_12._don_le_a`
|
| 316 |
+
3. `_ƒe_nu_dze_la,_wod`
|
| 317 |
|
| 318 |
**Context Size 4:**
|
| 319 |
|
| 320 |
+
1. `_ƒe_me_da_asitsi_et`
|
| 321 |
+
2. `_le_du_be_la,_eye_w`
|
| 322 |
+
3. `nye_to_february_raw`
|
| 323 |
|
| 324 |
|
| 325 |
### Key Findings
|
| 326 |
|
| 327 |
+
- **Best Predictability:** Context-4 (word) with 96.1% predictability
|
| 328 |
- **Branching Factor:** Decreases with context size (more deterministic)
|
| 329 |
+
- **Memory Trade-off:** Larger contexts require more storage (89,556 contexts)
|
| 330 |
- **Recommendation:** Context-3 or Context-4 for text generation
|
| 331 |
|
| 332 |
---
|
|
|
|
| 342 |
|
| 343 |
| Metric | Value |
|
| 344 |
|--------|-------|
|
| 345 |
+
| Vocabulary Size | 11,578 |
|
| 346 |
+
| Total Tokens | 260,556 |
|
| 347 |
+
| Mean Frequency | 22.50 |
|
| 348 |
+
| Median Frequency | 3 |
|
| 349 |
+
| Frequency Std Dev | 257.37 |
|
| 350 |
|
| 351 |
### Most Common Words
|
| 352 |
|
| 353 |
| Rank | Word | Frequency |
|
| 354 |
|------|------|-----------|
|
| 355 |
+
| 1 | ƒe | 16,951 |
|
| 356 |
+
| 2 | le | 14,512 |
|
| 357 |
| 3 | me | 8,468 |
|
| 358 |
+
| 4 | si | 6,279 |
|
| 359 |
+
| 5 | la | 4,866 |
|
| 360 |
+
| 6 | kple | 4,852 |
|
| 361 |
+
| 7 | be | 3,745 |
|
| 362 |
+
| 8 | nye | 3,709 |
|
| 363 |
+
| 9 | ɖe | 3,263 |
|
| 364 |
| 10 | siwo | 2,545 |
|
| 365 |
|
| 366 |
### Least Common Words (from vocabulary)
|
| 367 |
|
| 368 |
| Rank | Word | Frequency |
|
| 369 |
|------|------|-----------|
|
| 370 |
+
| 1 | woɖunɛ | 2 |
|
| 371 |
+
| 2 | couscous | 2 |
|
| 372 |
+
| 3 | fufú | 2 |
|
| 373 |
+
| 4 | loi | 2 |
|
| 374 |
| 5 | klottey | 2 |
|
| 375 |
| 6 | korle | 2 |
|
| 376 |
| 7 | domelovo | 2 |
|
|
|
|
| 382 |
|
| 383 |
| Metric | Value |
|
| 384 |
|--------|-------|
|
| 385 |
+
| Zipf Coefficient | 1.1638 |
|
| 386 |
+
| R² (Goodness of Fit) | 0.992157 |
|
| 387 |
| Adherence Quality | **excellent** |
|
| 388 |
|
| 389 |
### Coverage Analysis
|
| 390 |
|
| 391 |
| Top N Words | Coverage |
|
| 392 |
|-------------|----------|
|
| 393 |
+
| Top 100 | 49.7% |
|
| 394 |
+
| Top 1,000 | 78.5% |
|
| 395 |
+
| Top 5,000 | 93.7% |
|
| 396 |
+
| Top 10,000 | 98.8% |
|
| 397 |
|
| 398 |
### Key Findings
|
| 399 |
|
| 400 |
+
- **Zipf Compliance:** R²=0.9922 indicates excellent adherence to Zipf's law
|
| 401 |
+
- **High Frequency Dominance:** Top 100 words cover 49.7% of corpus
|
| 402 |
+
- **Long Tail:** 1,578 words needed for remaining 1.2% coverage
|
| 403 |
|
| 404 |
---
|
| 405 |
## 5. Word Embeddings Evaluation
|
|
|
|
| 412 |
|
| 413 |

|
| 414 |
|
|
|
|
| 415 |
|
| 416 |
+
### 5.1 Cross-Lingual Alignment
|
| 417 |
+
|
| 418 |
+

|
| 419 |
+
|
| 420 |
+

|
| 421 |
+
|
| 422 |
+
|
| 423 |
+
### 5.2 Model Comparison
|
| 424 |
+
|
| 425 |
+
| Model | Dimension | Isotropy | Semantic Density | Alignment R@1 | Alignment R@10 |
|
| 426 |
+
|-------|-----------|----------|------------------|---------------|----------------|
|
| 427 |
+
| **mono_32d** | 32 | 0.7155 🏆 | 0.3892 | N/A | N/A |
|
| 428 |
+
| **mono_64d** | 64 | 0.2811 | 0.3672 | N/A | N/A |
|
| 429 |
+
| **mono_128d** | 128 | 0.0660 | 0.3770 | N/A | N/A |
|
| 430 |
+
| **aligned_32d** | 32 | 0.7155 | 0.4123 | 0.0180 | 0.1660 |
|
| 431 |
+
| **aligned_64d** | 64 | 0.2811 | 0.3853 | 0.0500 | 0.2600 |
|
| 432 |
+
| **aligned_128d** | 128 | 0.0660 | 0.3736 | 0.0840 | 0.2920 |
|
| 433 |
|
| 434 |
### Key Findings
|
| 435 |
|
| 436 |
+
- **Best Isotropy:** mono_32d with 0.7155 (more uniform distribution)
|
| 437 |
+
- **Semantic Density:** Average pairwise similarity of 0.3841. Lower values indicate better semantic separation.
|
| 438 |
+
- **Alignment Quality:** Aligned models achieve up to 8.4% R@1 in cross-lingual retrieval.
|
| 439 |
+
- **Recommendation:** 128d aligned for best cross-lingual performance
|
| 440 |
|
| 441 |
---
|
| 442 |
+
## 6. Morphological Analysis (Experimental)
|
| 443 |
+
|
| 444 |
+
This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data.
|
| 445 |
+
|
| 446 |
+
### 6.1 Productivity & Complexity
|
| 447 |
+
|
| 448 |
+
| Metric | Value | Interpretation | Recommendation |
|
| 449 |
+
|--------|-------|----------------|----------------|
|
| 450 |
+
| Productivity Index | **5.000** | High morphological productivity | Reliable analysis |
|
| 451 |
+
| Idiomaticity Gap | **0.210** | High formulaic/idiomatic content | - |
|
| 452 |
+
|
| 453 |
+
### 6.2 Affix Inventory (Productive Units)
|
| 454 |
+
|
| 455 |
+
These are the most productive prefixes and suffixes identified by sampling the vocabulary for global substitutability patterns. A unit is considered an affix if stripping it leaves a valid stem that appears in other contexts.
|
| 456 |
+
|
| 457 |
+
#### Productive Prefixes
|
| 458 |
+
| Prefix | Examples |
|
| 459 |
+
|--------|----------|
|
| 460 |
+
|
| 461 |
+
#### Productive Suffixes
|
| 462 |
+
| Suffix | Examples |
|
| 463 |
+
|--------|----------|
|
| 464 |
+
| `-e` | okeke, dzoe, exɔe |
|
| 465 |
+
| `-wo` | yeyeawo, kadodowo, eɖewo |
|
| 466 |
+
| `-awo` | yeyeawo, franseawo, kɔwlɔawo |
|
| 467 |
+
|
| 468 |
+
### 6.3 Bound Stems (Lexical Roots)
|
| 469 |
+
|
| 470 |
+
Bound stems are high-frequency subword units that are semantically cohesive but rarely appear as standalone words. These often correspond to the 'core' of a word that requires inflection or derivation to be valid.
|
| 471 |
+
|
| 472 |
+
| Stem | Cohesion | Substitutability | Examples |
|
| 473 |
+
|------|----------|------------------|----------|
|
| 474 |
+
| `gbal` | 1.65x | 17 contexts | gbalɛ, gbale, gbalé |
|
| 475 |
+
| `lawo` | 1.59x | 14 contexts | xɔlawo, dolawo, nɔlawo |
|
| 476 |
+
| `pekp` | 1.82x | 9 contexts | kpekpe, kpekpea, kpekpeme |
|
| 477 |
+
| `dɔwɔ` | 1.66x | 11 contexts | dɔwɔm, dɔwɔla, dɔwɔƒe |
|
| 478 |
+
| `balẽ` | 1.72x | 9 contexts | agbalẽ, gbalẽa, lãgbalẽ |
|
| 479 |
+
| `omet` | 1.44x | 14 contexts | wometa, tometi, ƒometɔ |
|
| 480 |
+
| `dziɖ` | 1.82x | 7 contexts | dziɖum, dziɖuɖu, dziɖula |
|
| 481 |
+
| `ziɖu` | 1.89x | 6 contexts | dziɖum, dziɖuɖu, dziɖula |
|
| 482 |
+
| `takp` | 1.74x | 7 contexts | takpɔha, takpɔƒe, takpɔƒea |
|
| 483 |
+
| `nyat` | 1.68x | 7 contexts | nyati, nyatia, nyatiwo |
|
| 484 |
+
| `iɖuɖ` | 1.91x | 5 contexts | dziɖuɖu, dziɖuɖua, dziɖuɖuha |
|
| 485 |
+
| `iawo` | 1.64x | 7 contexts | siawo, fiawo, viawo |
|
| 486 |
+
|
| 487 |
+
### 6.4 Affix Compatibility (Co-occurrence)
|
| 488 |
+
|
| 489 |
+
This table shows which prefixes and suffixes most frequently co-occur on the same stems, revealing the 'stacking' rules of the language's morphology.
|
| 490 |
+
|
| 491 |
+
*No significant affix co-occurrences detected.*
|
| 492 |
+
|
| 493 |
+
|
| 494 |
+
### 6.5 Recursive Morpheme Segmentation
|
| 495 |
+
|
| 496 |
+
Using **Recursive Hierarchical Substitutability**, we decompose complex words into their constituent morphemes. This approach handles nested affixes (e.g., `prefix-prefix-root-suffix`).
|
| 497 |
+
|
| 498 |
+
| Word | Suggested Split | Confidence | Stem |
|
| 499 |
+
|------|-----------------|------------|------|
|
| 500 |
+
| gbegbɔgblɔwo | **`gbegbɔgblɔ-wo`** | 4.5 | `gbegbɔgblɔ` |
|
| 501 |
+
| aƒemelãwo | **`aƒemelã-wo`** | 4.5 | `aƒemelã` |
|
| 502 |
+
| gbebiamewo | **`gbebiame-wo`** | 4.5 | `gbebiame` |
|
| 503 |
+
| srɔ̃tɔawo | **`srɔ̃tɔ-awo`** | 4.5 | `srɔ̃tɔ` |
|
| 504 |
+
| lebanontɔwo | **`lebanontɔ-wo`** | 4.5 | `lebanontɔ` |
|
| 505 |
+
| wuietɔ̃awo | **`wuietɔ̃-awo`** | 4.5 | `wuietɔ̃` |
|
| 506 |
+
| domenyiŋkɔwo | **`domenyiŋkɔ-wo`** | 4.5 | `domenyiŋkɔ` |
|
| 507 |
+
| ŋkuɖodzikpewo | **`ŋkuɖodzikpe-wo`** | 4.5 | `ŋkuɖodzikpe` |
|
| 508 |
+
| nukpɔsusuwo | **`nukpɔsusu-wo`** | 4.5 | `nukpɔsusu` |
|
| 509 |
+
| swedentɔwo | **`swedentɔ-wo`** | 4.5 | `swedentɔ` |
|
| 510 |
+
| asanteawo | **`asante-awo`** | 4.5 | `asante` |
|
| 511 |
+
| sɔlemexɔwo | **`sɔlemexɔ-wo`** | 4.5 | `sɔlemexɔ` |
|
| 512 |
+
| akpɔkplɔwo | **`akpɔkplɔ-wo`** | 4.5 | `akpɔkplɔ` |
|
| 513 |
+
| amegãxiwo | **`amegãxi-wo`** | 4.5 | `amegãxi` |
|
| 514 |
+
| ukrainetɔwo | **`ukrainetɔ-wo`** | 4.5 | `ukrainetɔ` |
|
| 515 |
+
|
| 516 |
+
### 6.6 Linguistic Interpretation
|
| 517 |
+
|
| 518 |
+
> **Automated Insight:**
|
| 519 |
+
The language Ewe shows high morphological productivity. The subword models are significantly more efficient than word models, suggesting a rich system of affixation or compounding.
|
| 520 |
+
|
| 521 |
+
---
|
| 522 |
+
## 7. Summary & Recommendations
|
| 523 |
|
| 524 |

|
| 525 |
|
|
|
|
| 527 |
|
| 528 |
| Component | Recommended | Rationale |
|
| 529 |
|-----------|-------------|-----------|
|
| 530 |
+
| Tokenizer | **32k BPE** | Best compression (4.31x) |
|
| 531 |
+
| N-gram | **2-gram** | Lowest perplexity (259) |
|
| 532 |
+
| Markov | **Context-4** | Highest predictability (96.1%) |
|
| 533 |
| Embeddings | **100d** | Balanced semantic capture and isotropy |
|
| 534 |
|
| 535 |
+
|
| 536 |
---
|
| 537 |
## Appendix: Metrics Glossary & Interpretation Guide
|
| 538 |
|
|
|
|
| 722 |
author = {Kamali, Omar},
|
| 723 |
title = {Wikilangs: Open NLP Models for Wikipedia Languages},
|
| 724 |
year = {2025},
|
| 725 |
+
doi = {10.5281/zenodo.18073153},
|
| 726 |
+
publisher = {Zenodo},
|
| 727 |
url = {https://huggingface.co/wikilangs}
|
| 728 |
institution = {Omneity Labs}
|
| 729 |
}
|
|
|
|
| 739 |
- 🤗 Models: [huggingface.co/wikilangs](https://huggingface.co/wikilangs)
|
| 740 |
- 📊 Data: [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly)
|
| 741 |
- 👤 Author: [Omar Kamali](https://huggingface.co/omarkamali)
|
| 742 |
+
- 🤝 Sponsor: [Featherless AI](https://featherless.ai)
|
| 743 |
---
|
| 744 |
*Generated by Wikilangs Models Pipeline*
|
| 745 |
|
| 746 |
+
*Report Date: 2026-01-04 03:05:37*
|
models/embeddings/aligned/ee_128d.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:138d5016cf51bd2c072d7ddd0b75f3388c58c087eb47a93eafccb332d9bc7a84
|
| 3 |
+
size 1029067633
|
models/embeddings/aligned/ee_128d.meta.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"lang": "ee", "dim": 128, "max_seq_len": 512, "is_aligned": true}
|
models/embeddings/aligned/ee_128d.projection.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:28cd1530e006fb29b6f526a46114b179fcf43946ef08586e7aec8913c54ac155
|
| 3 |
+
size 65664
|
models/embeddings/aligned/ee_128d_metadata.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"language": "ee",
|
| 3 |
+
"dimension": 128,
|
| 4 |
+
"version": "aligned",
|
| 5 |
+
"hub_language": "en",
|
| 6 |
+
"seed_vocab_size": 1671,
|
| 7 |
+
"vocab_size": 4869
|
| 8 |
+
}
|
models/embeddings/aligned/ee_32d.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d9d638ed553748b884a0e65a55719c49053e00c20b2215c890b5f4692a7a0e3e
|
| 3 |
+
size 257328241
|
models/embeddings/aligned/ee_32d.meta.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"lang": "ee", "dim": 32, "max_seq_len": 512, "is_aligned": true}
|
models/embeddings/aligned/ee_32d.projection.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:aa478442fcfd6038cca5ccf9c94068b8c55816705adab108a59d5ebc31a4f609
|
| 3 |
+
size 4224
|
models/embeddings/aligned/ee_32d_metadata.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"language": "ee",
|
| 3 |
+
"dimension": 32,
|
| 4 |
+
"version": "aligned",
|
| 5 |
+
"hub_language": "en",
|
| 6 |
+
"seed_vocab_size": 1671,
|
| 7 |
+
"vocab_size": 4869
|
| 8 |
+
}
|
models/embeddings/aligned/ee_64d.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0bc8bbef8d8e32f40c1ace722ed395d7b6f5837fcf53bfe52d2a5a9a8bcdb103
|
| 3 |
+
size 514574705
|
models/embeddings/aligned/ee_64d.meta.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"lang": "ee", "dim": 64, "max_seq_len": 512, "is_aligned": true}
|
models/embeddings/aligned/ee_64d.projection.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:61a45886575d77b99f15aaca6754fe29daeee42d1c92737a611eae6b21692943
|
| 3 |
+
size 16512
|
models/embeddings/aligned/ee_64d_metadata.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"language": "ee",
|
| 3 |
+
"dimension": 64,
|
| 4 |
+
"version": "aligned",
|
| 5 |
+
"hub_language": "en",
|
| 6 |
+
"seed_vocab_size": 1671,
|
| 7 |
+
"vocab_size": 4869
|
| 8 |
+
}
|
models/embeddings/monolingual/ee_128d.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:138d5016cf51bd2c072d7ddd0b75f3388c58c087eb47a93eafccb332d9bc7a84
|
| 3 |
+
size 1029067633
|
models/embeddings/monolingual/ee_128d_metadata.json
CHANGED
|
@@ -3,11 +3,13 @@
|
|
| 3 |
"dimension": 128,
|
| 4 |
"version": "monolingual",
|
| 5 |
"training_params": {
|
| 6 |
-
"
|
| 7 |
"min_count": 5,
|
| 8 |
"window": 5,
|
| 9 |
"negative": 5,
|
| 10 |
-
"epochs": 5
|
|
|
|
|
|
|
| 11 |
},
|
| 12 |
-
"vocab_size":
|
| 13 |
}
|
|
|
|
| 3 |
"dimension": 128,
|
| 4 |
"version": "monolingual",
|
| 5 |
"training_params": {
|
| 6 |
+
"algorithm": "skipgram",
|
| 7 |
"min_count": 5,
|
| 8 |
"window": 5,
|
| 9 |
"negative": 5,
|
| 10 |
+
"epochs": 5,
|
| 11 |
+
"encoding_method": "rope",
|
| 12 |
+
"dim": 128
|
| 13 |
},
|
| 14 |
+
"vocab_size": 4869
|
| 15 |
}
|
models/embeddings/monolingual/ee_32d.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d9d638ed553748b884a0e65a55719c49053e00c20b2215c890b5f4692a7a0e3e
|
| 3 |
+
size 257328241
|
models/embeddings/monolingual/ee_32d_metadata.json
CHANGED
|
@@ -3,11 +3,13 @@
|
|
| 3 |
"dimension": 32,
|
| 4 |
"version": "monolingual",
|
| 5 |
"training_params": {
|
| 6 |
-
"
|
| 7 |
"min_count": 5,
|
| 8 |
"window": 5,
|
| 9 |
"negative": 5,
|
| 10 |
-
"epochs": 5
|
|
|
|
|
|
|
| 11 |
},
|
| 12 |
-
"vocab_size":
|
| 13 |
}
|
|
|
|
| 3 |
"dimension": 32,
|
| 4 |
"version": "monolingual",
|
| 5 |
"training_params": {
|
| 6 |
+
"algorithm": "skipgram",
|
| 7 |
"min_count": 5,
|
| 8 |
"window": 5,
|
| 9 |
"negative": 5,
|
| 10 |
+
"epochs": 5,
|
| 11 |
+
"encoding_method": "rope",
|
| 12 |
+
"dim": 32
|
| 13 |
},
|
| 14 |
+
"vocab_size": 4869
|
| 15 |
}
|
models/embeddings/monolingual/ee_64d.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0bc8bbef8d8e32f40c1ace722ed395d7b6f5837fcf53bfe52d2a5a9a8bcdb103
|
| 3 |
+
size 514574705
|
models/embeddings/monolingual/ee_64d_metadata.json
CHANGED
|
@@ -3,11 +3,13 @@
|
|
| 3 |
"dimension": 64,
|
| 4 |
"version": "monolingual",
|
| 5 |
"training_params": {
|
| 6 |
-
"
|
| 7 |
"min_count": 5,
|
| 8 |
"window": 5,
|
| 9 |
"negative": 5,
|
| 10 |
-
"epochs": 5
|
|
|
|
|
|
|
| 11 |
},
|
| 12 |
-
"vocab_size":
|
| 13 |
}
|
|
|
|
| 3 |
"dimension": 64,
|
| 4 |
"version": "monolingual",
|
| 5 |
"training_params": {
|
| 6 |
+
"algorithm": "skipgram",
|
| 7 |
"min_count": 5,
|
| 8 |
"window": 5,
|
| 9 |
"negative": 5,
|
| 10 |
+
"epochs": 5,
|
| 11 |
+
"encoding_method": "rope",
|
| 12 |
+
"dim": 64
|
| 13 |
},
|
| 14 |
+
"vocab_size": 4869
|
| 15 |
}
|
models/subword_markov/ee_markov_ctx1_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:51536daa3bb9781fc6466f29b0e073c5a52e9d1659058630978baedb6b8e90d1
|
| 3 |
+
size 36773
|
models/subword_markov/ee_markov_ctx1_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 1,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "ee",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 1,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "ee",
|
| 5 |
+
"unique_contexts": 389,
|
| 6 |
+
"total_transitions": 1527359
|
| 7 |
}
|
models/subword_markov/ee_markov_ctx2_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1be33f68703919123c5a502f46979ea62f68c0e271d16c4c63435d040f2fd841
|
| 3 |
+
size 204528
|
models/subword_markov/ee_markov_ctx2_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 2,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "ee",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 2,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "ee",
|
| 5 |
+
"unique_contexts": 4399,
|
| 6 |
+
"total_transitions": 1526002
|
| 7 |
}
|
models/subword_markov/ee_markov_ctx3_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a980c465972864bf604b7d22d020aaf3bd03523b3f16fd05ebc1a73c8728f617
|
| 3 |
+
size 670860
|
models/subword_markov/ee_markov_ctx3_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 3,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "ee",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 3,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "ee",
|
| 5 |
+
"unique_contexts": 24892,
|
| 6 |
+
"total_transitions": 1524645
|
| 7 |
}
|
models/subword_markov/ee_markov_ctx4_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8aea990056a79d55b9ce0c8e6f64dbd4a7eb692f3afce2aa8adc84e8c2221a8f
|
| 3 |
+
size 1606353
|
models/subword_markov/ee_markov_ctx4_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 4,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "ee",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 4,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "ee",
|
| 5 |
+
"unique_contexts": 89556,
|
| 6 |
+
"total_transitions": 1523288
|
| 7 |
}
|
models/subword_ngram/ee_2gram_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0267731e70fe4438e6223c6ad54399ae04b3f3aaf1d78a459a72777de37bd5e3
|
| 3 |
+
size 26749
|
models/subword_ngram/ee_2gram_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"n": 2,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "ee",
|
| 5 |
-
"unique_ngrams":
|
| 6 |
-
"total_ngrams":
|
| 7 |
}
|
|
|
|
| 2 |
"n": 2,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "ee",
|
| 5 |
+
"unique_ngrams": 1996,
|
| 6 |
+
"total_ngrams": 1527359
|
| 7 |
}
|
models/subword_ngram/ee_3gram_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f811c91a9acd7abd901fdd218900d201d946bb43abc7c89a4122f00007b347eb
|
| 3 |
+
size 150482
|
models/subword_ngram/ee_3gram_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"n": 3,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "ee",
|
| 5 |
-
"unique_ngrams":
|
| 6 |
-
"total_ngrams":
|
| 7 |
}
|
|
|
|
| 2 |
"n": 3,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "ee",
|
| 5 |
+
"unique_ngrams": 12826,
|
| 6 |
+
"total_ngrams": 1526002
|
| 7 |
}
|
models/subword_ngram/ee_4gram_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:111de5625fd9154e495e06d0da73e18820eee30d44602b8a2594310118de7801
|
| 3 |
+
size 622000
|
models/subword_ngram/ee_4gram_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"n": 4,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "ee",
|
| 5 |
-
"unique_ngrams":
|
| 6 |
-
"total_ngrams":
|
| 7 |
}
|
|
|
|
| 2 |
"n": 4,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "ee",
|
| 5 |
+
"unique_ngrams": 51628,
|
| 6 |
+
"total_ngrams": 1524645
|
| 7 |
}
|
models/subword_ngram/ee_5gram_subword.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:88839dbf14600598089dc96731844545a675ef788e19d324450ff7d37f642cde
|
| 3 |
+
size 1114046
|
models/subword_ngram/ee_5gram_subword_metadata.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"n": 5,
|
| 3 |
+
"variant": "subword",
|
| 4 |
+
"language": "ee",
|
| 5 |
+
"unique_ngrams": 94077,
|
| 6 |
+
"total_ngrams": 1523288
|
| 7 |
+
}
|
models/tokenizer/ee_tokenizer_16k.model
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ea64f3995183acdab8d8fc6d8b56accc12add1e1835e8c8b3c694434019de1bc
|
| 3 |
+
size 514447
|
models/tokenizer/ee_tokenizer_16k.vocab
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/tokenizer/ee_tokenizer_32k.model
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a706fb494ef21b855f3968e14427ac6f55804b8b1c3d359f34002419293ba9c1
|
| 3 |
+
size 792059
|
models/tokenizer/ee_tokenizer_32k.vocab
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/tokenizer/ee_tokenizer_8k.model
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2316a005005e904981c9e7cfe95dde39d03e222cab215cf2d0b164d90f845191
|
| 3 |
+
size 375410
|
models/tokenizer/ee_tokenizer_8k.vocab
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/vocabulary/ee_vocabulary.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:771edb67abb5b274a8abd8db9b39eab47626e5b862bd77a5227c6b5c72f7829f
|
| 3 |
+
size 191748
|
models/vocabulary/ee_vocabulary_metadata.json
CHANGED
|
@@ -1,16 +1,17 @@
|
|
| 1 |
{
|
| 2 |
"language": "ee",
|
| 3 |
-
"vocabulary_size":
|
|
|
|
| 4 |
"statistics": {
|
| 5 |
-
"type_token_ratio": 0.
|
| 6 |
"coverage": {
|
| 7 |
-
"top_100": 0.
|
| 8 |
-
"top_1000": 0.
|
| 9 |
-
"top_5000": 0.
|
| 10 |
-
"top_10000": 0.
|
| 11 |
},
|
| 12 |
-
"hapax_count":
|
| 13 |
-
"hapax_ratio": 0.
|
| 14 |
-
"total_documents":
|
| 15 |
}
|
| 16 |
}
|
|
|
|
| 1 |
{
|
| 2 |
"language": "ee",
|
| 3 |
+
"vocabulary_size": 11578,
|
| 4 |
+
"variant": "full",
|
| 5 |
"statistics": {
|
| 6 |
+
"type_token_ratio": 0.0939830061316206,
|
| 7 |
"coverage": {
|
| 8 |
+
"top_100": 0.4716180564400211,
|
| 9 |
+
"top_1000": 0.7447135241352959,
|
| 10 |
+
"top_5000": 0.8886046469314605,
|
| 11 |
+
"top_10000": 0.936664180054948
|
| 12 |
},
|
| 13 |
+
"hapax_count": 14249,
|
| 14 |
+
"hapax_ratio": 0.5517094513493631,
|
| 15 |
+
"total_documents": 1357
|
| 16 |
}
|
| 17 |
}
|
models/word_markov/ee_markov_ctx1_word.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f1c6b29e1993b44121a5d77ed0b1bf8f10088a799dee7e338f7bfa31e73aea2b
|
| 3 |
+
size 921457
|
models/word_markov/ee_markov_ctx1_word_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 1,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "ee",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 1,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "ee",
|
| 5 |
+
"unique_contexts": 25800,
|
| 6 |
+
"total_transitions": 273448
|
| 7 |
}
|
models/word_markov/ee_markov_ctx2_word.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2cef6e9b3ab6ee2cddb2dc893bb2607758a1cdc958438d70a9ef9fcd0ef55761
|
| 3 |
+
size 2274725
|
models/word_markov/ee_markov_ctx2_word_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 2,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "ee",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 2,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "ee",
|
| 5 |
+
"unique_contexts": 120194,
|
| 6 |
+
"total_transitions": 272091
|
| 7 |
}
|
models/word_markov/ee_markov_ctx3_word.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8cc008b3ad1e5a09ffebbb30a5534ee9b25d67a1b2da653a5f4de623f2f378dd
|
| 3 |
+
size 3436521
|
models/word_markov/ee_markov_ctx3_word_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 3,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "ee",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 3,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "ee",
|
| 5 |
+
"unique_contexts": 201432,
|
| 6 |
+
"total_transitions": 270734
|
| 7 |
}
|