Spaces:
Sleeping
Sleeping
httpdaniel
commited on
Commit
·
9531160
1
Parent(s):
90231c1
Update
Browse files
app.py
CHANGED
|
@@ -8,6 +8,7 @@ from langchain_core.prompts import ChatPromptTemplate
|
|
| 8 |
from langchain.chains.combine_documents import create_stuff_documents_chain
|
| 9 |
from langchain.chains import create_retrieval_chain
|
| 10 |
|
|
|
|
| 11 |
def initialise_chatbot(pdf, llm, progress=gr.Progress()):
|
| 12 |
progress(0, desc="Reading PDF")
|
| 13 |
|
|
@@ -18,10 +19,7 @@ def initialise_chatbot(pdf, llm, progress=gr.Progress()):
|
|
| 18 |
|
| 19 |
progress(0.25, desc="Initialising Vectorstore")
|
| 20 |
|
| 21 |
-
vectorstore = Chroma.from_documents(
|
| 22 |
-
splits,
|
| 23 |
-
embedding=HuggingFaceEmbeddings()
|
| 24 |
-
)
|
| 25 |
|
| 26 |
progress(0.85, desc="Initialising LLM")
|
| 27 |
|
|
@@ -30,13 +28,10 @@ def initialise_chatbot(pdf, llm, progress=gr.Progress()):
|
|
| 30 |
task="text-generation",
|
| 31 |
max_new_tokens=512,
|
| 32 |
top_k=4,
|
| 33 |
-
temperature=0.05
|
| 34 |
)
|
| 35 |
|
| 36 |
-
chat = ChatHuggingFace(
|
| 37 |
-
llm=llm,
|
| 38 |
-
verbose=True
|
| 39 |
-
)
|
| 40 |
|
| 41 |
retriever = vectorstore.as_retriever(search_kwargs={"k": 8})
|
| 42 |
|
|
@@ -62,35 +57,55 @@ def initialise_chatbot(pdf, llm, progress=gr.Progress()):
|
|
| 62 |
|
| 63 |
return rag_chain, "Complete!"
|
| 64 |
|
|
|
|
| 65 |
def send(message, rag_chain, chat_history):
|
| 66 |
response = rag_chain.invoke({"input": message})
|
| 67 |
chat_history.append((message, response["answer"]))
|
| 68 |
|
| 69 |
return "", chat_history
|
| 70 |
|
| 71 |
-
with gr.Blocks() as demo:
|
| 72 |
|
|
|
|
| 73 |
vectorstore = gr.State()
|
| 74 |
rag_chain = gr.State()
|
| 75 |
-
|
| 76 |
gr.Markdown("<H1>Talk to Documents</H1>")
|
| 77 |
gr.Markdown("<H3>Upload and ask questions about your PDF files</H3>")
|
| 78 |
-
gr.Markdown(
|
|
|
|
|
|
|
| 79 |
|
| 80 |
with gr.Row():
|
| 81 |
with gr.Column(scale=1):
|
| 82 |
input_pdf = gr.File(label="1. Upload PDF")
|
| 83 |
-
language_model = gr.Radio(
|
| 84 |
-
|
| 85 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
|
| 87 |
with gr.Column(scale=4):
|
| 88 |
chatbot = gr.Chatbot(scale=1)
|
| 89 |
message = gr.Textbox(label="4. Ask questions about your PDF")
|
| 90 |
|
| 91 |
initialise_chatbot_btn.click(
|
| 92 |
-
fn=initialise_chatbot,
|
|
|
|
|
|
|
| 93 |
)
|
| 94 |
-
message.submit(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
|
| 96 |
-
demo.launch()
|
|
|
|
| 8 |
from langchain.chains.combine_documents import create_stuff_documents_chain
|
| 9 |
from langchain.chains import create_retrieval_chain
|
| 10 |
|
| 11 |
+
|
| 12 |
def initialise_chatbot(pdf, llm, progress=gr.Progress()):
|
| 13 |
progress(0, desc="Reading PDF")
|
| 14 |
|
|
|
|
| 19 |
|
| 20 |
progress(0.25, desc="Initialising Vectorstore")
|
| 21 |
|
| 22 |
+
vectorstore = Chroma.from_documents(splits, embedding=HuggingFaceEmbeddings())
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
progress(0.85, desc="Initialising LLM")
|
| 25 |
|
|
|
|
| 28 |
task="text-generation",
|
| 29 |
max_new_tokens=512,
|
| 30 |
top_k=4,
|
| 31 |
+
temperature=0.05,
|
| 32 |
)
|
| 33 |
|
| 34 |
+
chat = ChatHuggingFace(llm=llm, verbose=True)
|
|
|
|
|
|
|
|
|
|
| 35 |
|
| 36 |
retriever = vectorstore.as_retriever(search_kwargs={"k": 8})
|
| 37 |
|
|
|
|
| 57 |
|
| 58 |
return rag_chain, "Complete!"
|
| 59 |
|
| 60 |
+
|
| 61 |
def send(message, rag_chain, chat_history):
|
| 62 |
response = rag_chain.invoke({"input": message})
|
| 63 |
chat_history.append((message, response["answer"]))
|
| 64 |
|
| 65 |
return "", chat_history
|
| 66 |
|
|
|
|
| 67 |
|
| 68 |
+
with gr.Blocks() as demo:
|
| 69 |
vectorstore = gr.State()
|
| 70 |
rag_chain = gr.State()
|
| 71 |
+
|
| 72 |
gr.Markdown("<H1>Talk to Documents</H1>")
|
| 73 |
gr.Markdown("<H3>Upload and ask questions about your PDF files</H3>")
|
| 74 |
+
gr.Markdown(
|
| 75 |
+
"<H6>Note: This project uses LangChain to perform RAG (Retrieval Augmented Generation) on PDF files, allowing users to ask any questions related to their contents. When a PDF file is uploaded, it is embedded and stored in an in-memory Chroma vectorstore, which the chatbot uses as a source of knowledge when aswering user questions.</H6>"
|
| 76 |
+
)
|
| 77 |
|
| 78 |
with gr.Row():
|
| 79 |
with gr.Column(scale=1):
|
| 80 |
input_pdf = gr.File(label="1. Upload PDF")
|
| 81 |
+
language_model = gr.Radio(
|
| 82 |
+
label="2. Choose LLM",
|
| 83 |
+
choices=[
|
| 84 |
+
"microsoft/Phi-3-mini-4k-instruct",
|
| 85 |
+
"mistralai/Mistral-7B-Instruct-v0.2",
|
| 86 |
+
"HuggingFaceH4/zephyr-7b-beta",
|
| 87 |
+
"mistralai/Mixtral-8x7B-Instruct-v0.1",
|
| 88 |
+
],
|
| 89 |
+
)
|
| 90 |
+
initialise_chatbot_btn = gr.Button(
|
| 91 |
+
value="3. Initialise Chatbot", variant="primary"
|
| 92 |
+
)
|
| 93 |
+
chatbot_initialisation_progress = gr.Textbox(
|
| 94 |
+
value="Not Started", label="Initialization Progress"
|
| 95 |
+
)
|
| 96 |
|
| 97 |
with gr.Column(scale=4):
|
| 98 |
chatbot = gr.Chatbot(scale=1)
|
| 99 |
message = gr.Textbox(label="4. Ask questions about your PDF")
|
| 100 |
|
| 101 |
initialise_chatbot_btn.click(
|
| 102 |
+
fn=initialise_chatbot,
|
| 103 |
+
inputs=[input_pdf, language_model],
|
| 104 |
+
outputs=[rag_chain, chatbot_initialisation_progress],
|
| 105 |
)
|
| 106 |
+
message.submit(
|
| 107 |
+
fn=send, inputs=[message, rag_chain, chatbot], outputs=[message, chatbot]
|
| 108 |
+
)
|
| 109 |
+
|
| 110 |
+
demo.launch()
|
| 111 |
|
|
|