File size: 42,906 Bytes
0d00d62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
{
  "title": "Gaussian Mixture Models (GMM) Mastery: 100 MCQs",
  "description": "A comprehensive set of 100 MCQs covering Gaussian Mixture Models (GMM) from fundamental intuition to EM algorithm, applications, soft clustering, covariance types, and real-world scenarios.",
  "questions": [
    {
      "id": 1,
      "questionText": "What is the primary goal of a Gaussian Mixture Model (GMM)?",
      "options": [
        "To reduce data dimensionality",
        "To perform supervised classification",
        "To model data as a mixture of multiple Gaussian distributions",
        "To perform hard clustering like K-Means"
      ],
      "correctAnswerIndex": 2,
      "explanation": "GMM assumes data is generated from a mixture of multiple Gaussian distributions."
    },
    {
      "id": 2,
      "questionText": "GMM is mainly used for:",
      "options": [
        "Unsupervised clustering",
        "Time series forecasting",
        "Supervised learning",
        "Regression problems"
      ],
      "correctAnswerIndex": 0,
      "explanation": "GMM is an unsupervised clustering technique."
    },
    {
      "id": 3,
      "questionText": "GMM provides which type of clustering?",
      "options": [
        "Soft probabilistic clustering",
        "Binary classification",
        "Hard clustering",
        "Feature selection"
      ],
      "correctAnswerIndex": 0,
      "explanation": "GMM assigns probability of belonging to each cluster."
    },
    {
      "id": 4,
      "questionText": "Which algorithm is commonly used to train GMM?",
      "options": [
        "Backpropagation",
        "Expectation-Maximization (EM)",
        "Gradient Descent",
        "Genetic Algorithm"
      ],
      "correctAnswerIndex": 1,
      "explanation": "EM algorithm is used to estimate GMM parameters."
    },
    {
      "id": 5,
      "questionText": "In GMM, each Gaussian distribution is called a:",
      "options": [
        "Component",
        "Kernel",
        "Label",
        "Loss function"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Each Gaussian is a component of the mixture model."
    },
    {
      "id": 6,
      "questionText": "The output of GMM for each data point is:",
      "options": [
        "Single cluster label only",
        "Probability distribution over all clusters",
        "Binary classification output",
        "Feature importance scores"
      ],
      "correctAnswerIndex": 1,
      "explanation": "GMM gives probability of belonging to each Gaussian cluster."
    },
    {
      "id": 7,
      "questionText": "GMM assumes that data in each cluster follows a:",
      "options": [
        "Uniform distribution",
        "Poisson distribution",
        "Exponential distribution",
        "Gaussian distribution"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Each cluster is modeled as a Normal (Gaussian) distribution."
    },
    {
      "id": 8,
      "questionText": "The number of Gaussian components in GMM must be:",
      "options": [
        "Always equal to number of features",
        "Unlimited by default",
        "Automatically detected always",
        "Predefined manually in most implementations"
      ],
      "correctAnswerIndex": 3,
      "explanation": "We usually define number of components (k) before training."
    },
    {
      "id": 9,
      "questionText": "GMM is a generalization of which algorithm?",
      "options": [
        "Random Forest",
        "K-Means",
        "Naive Bayes",
        "SVM"
      ],
      "correctAnswerIndex": 1,
      "explanation": "GMM is probabilistic extension of K-Means with soft assignments."
    },
    {
      "id": 10,
      "questionText": "Which of the following does GMM estimate?",
      "options": [
        "Mean only",
        "Variance only",
        "Only class probabilities",
        "Mean and covariance of each Gaussian"
      ],
      "correctAnswerIndex": 3,
      "explanation": "GMM learns mean, covariance, and weight of each Gaussian."
    },
    {
      "id": 11,
      "questionText": "What does 'mixture' mean in GMM?",
      "options": [
        "Multiple datasets combined",
        "Adding noise to data",
        "Combination of several Gaussian probability distributions",
        "Blending of supervised and unsupervised learning"
      ],
      "correctAnswerIndex": 2,
      "explanation": "GMM models data as sum of multiple Gaussian distributions."
    },
    {
      "id": 12,
      "questionText": "GMM can model clusters with:",
      "options": [
        "Only spherical shapes",
        "Elliptical and varying density clusters",
        "Only equal-sized circles",
        "Linear boundaries only"
      ],
      "correctAnswerIndex": 1,
      "explanation": "GMM supports ellipsoidal clusters due to covariance matrix."
    },
    {
      "id": 13,
      "questionText": "Which type of covariance can GMM use?",
      "options": [
        "Only diagonal",
        "Only identity matrix",
        "Only full",
        "Full, Diagonal, Tied, Spherical"
      ],
      "correctAnswerIndex": 3,
      "explanation": "GMM allows flexible covariance structure options."
    },
    {
      "id": 14,
      "questionText": "GMM is best suited when clusters are:",
      "options": [
        "Categorical only",
        "Perfectly separated",
        "Non-overlapping and spherical",
        "Overlapping and elliptical"
      ],
      "correctAnswerIndex": 3,
      "explanation": "GMM is ideal for overlapping soft clusters."
    },
    {
      "id": 15,
      "questionText": "Which step assigns probability to each point belonging to a cluster in EM?",
      "options": [
        "Initialization step",
        "Maximization step",
        "Regularization step",
        "Expectation step"
      ],
      "correctAnswerIndex": 3,
      "explanation": "E-step calculates responsibility of each Gaussian."
    },
    {
      "id": 16,
      "questionText": "Which step updates parameters of Gaussians in EM?",
      "options": [
        "Prediction step",
        "Maximization step",
        "Normalization step",
        "Expectation step"
      ],
      "correctAnswerIndex": 1,
      "explanation": "M-step updates means, covariances, and weights."
    },
    {
      "id": 17,
      "questionText": "In GMM, mixing coefficients must:",
      "options": [
        "Sum to one",
        "Be greater than one",
        "Sum to zero",
        "Be negative"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Mixing weights represent probabilities → must sum to 1."
    },
    {
      "id": 18,
      "questionText": "What does a high responsibility value mean in GMM?",
      "options": [
        "Point is outlier",
        "Point strongly belongs to that Gaussian",
        "Cluster is ignored",
        "Model has failed"
      ],
      "correctAnswerIndex": 1,
      "explanation": "High responsibility = high probability of belonging to that cluster."
    },
    {
      "id": 19,
      "questionText": "GMM belongs to which model category?",
      "options": [
        "Neural network",
        "Discriminative model",
        "Purely geometric model",
        "Generative probabilistic model"
      ],
      "correctAnswerIndex": 3,
      "explanation": "GMM models probability distribution of data (generative)."
    },
    {
      "id": 20,
      "questionText": "GMM is useful in:",
      "options": [
        "Anomaly detection",
        "Speaker recognition",
        "Image segmentation",
        "All of the above"
      ],
      "correctAnswerIndex": 3,
      "explanation": "GMM widely used in real-world probabilistic applications."
    },
    {
      "id": 21,
      "questionText": "What does GMM do better than K-Means?",
      "options": [
        "Handle only linear separability",
        "Ignore feature scale",
        "Model overlapping probabilistic clusters",
        "Assign hard labels only"
      ],
      "correctAnswerIndex": 2,
      "explanation": "GMM outperforms K-Means when clusters overlap."
    },
    {
      "id": 22,
      "questionText": "A drawback of GMM is:",
      "options": [
        "Requires predefined number of clusters",
        "No probabilistic output",
        "Only works with categorical data",
        "Cannot handle continuous data"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Number of components must be specified before fitting."
    },
    {
      "id": 23,
      "questionText": "What initialization is commonly used for GMM?",
      "options": [
        "K-Means centroids",
        "Random labels",
        "Bootstrap resampling",
        "Gradient descent"
      ],
      "correctAnswerIndex": 0,
      "explanation": "K-Means is commonly used to initialize cluster means."
    },
    {
      "id": 24,
      "questionText": "GMM uses which principle to maximize likelihood?",
      "options": [
        "Gradient Descent",
        "Expectation-Maximization",
        "Dropout Regularization",
        "Least Squares Minimization"
      ],
      "correctAnswerIndex": 1,
      "explanation": "EM is a likelihood-based optimization method."
    },
    {
      "id": 25,
      "questionText": "The final decision in GMM assigns a point to the cluster with:",
      "options": [
        "Highest variance",
        "Minimum distance",
        "Maximum probability (responsibility)",
        "Random chance"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Soft → hard label by selecting cluster with highest probability."
    },
    {
      "id": 26,
      "questionText": "What role does covariance play in GMM?",
      "options": [
        "Defines cluster shape and orientation",
        "Sets learning rate",
        "Controls number of clusters",
        "Removes noise features"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Covariance allows modeling elliptical and rotated clusters."
    },
    {
      "id": 27,
      "questionText": "What does GMM maximize during training?",
      "options": [
        "Sum of distances",
        "Training accuracy",
        "Entropy of clusters",
        "Total log-likelihood of data"
      ],
      "correctAnswerIndex": 3,
      "explanation": "EM optimizes log-likelihood of observing the data."
    },
    {
      "id": 28,
      "questionText": "What happens if two Gaussian components overlap heavily?",
      "options": [
        "Clusters merge into one automatically",
        "GMM switches to K-Means automatically",
        "GMM handles it with soft probabilities",
        "GMM fails immediately"
      ],
      "correctAnswerIndex": 2,
      "explanation": "GMM assigns probabilities to each cluster; overlap is handled naturally via soft assignments."
    },
    {
      "id": 29,
      "questionText": "Which metric can be used to choose the number of components in GMM?",
      "options": [
        "Accuracy",
        "F1-score",
        "Learning rate",
        "AIC (Akaike Information Criterion)"
      ],
      "correctAnswerIndex": 3,
      "explanation": "AIC and BIC help balance model fit with complexity to select number of components."
    },
    {
      "id": 30,
      "questionText": "BIC in GMM is used to:",
      "options": [
        "Normalize probabilities",
        "Estimate cluster assignments",
        "Update mean and covariance",
        "Select number of clusters considering model complexity"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Bayesian Information Criterion penalizes overly complex models to avoid overfitting."
    },
    {
      "id": 31,
      "questionText": "Scenario: You have overlapping clusters in 2D data. Which approach is suitable?",
      "options": [
        "K-Means",
        "DBSCAN with minPts=1",
        "Hierarchical clustering",
        "Gaussian Mixture Model"
      ],
      "correctAnswerIndex": 3,
      "explanation": "GMM handles overlapping clusters probabilistically, unlike K-Means which assigns hard labels."
    },
    {
      "id": 32,
      "questionText": "Which initialization can improve EM convergence?",
      "options": [
        "Using covariance as identity for all clusters",
        "Setting all means to zero",
        "Using K-Means centroids as initial means",
        "Randomly choosing one data point"
      ],
      "correctAnswerIndex": 2,
      "explanation": "K-Means initialization provides better starting points for EM algorithm."
    },
    {
      "id": 33,
      "questionText": "Soft clustering means:",
      "options": [
        "Each point has a probability of belonging to multiple clusters",
        "Clusters are linearly separable",
        "Clusters have equal sizes",
        "Each point is assigned only one cluster"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Soft clustering assigns probabilities rather than hard labels."
    },
    {
      "id": 34,
      "questionText": "What does EM algorithm alternate between?",
      "options": [
        "Expectation (E-step) and Maximization (M-step)",
        "Gradient descent and regularization",
        "Probability normalization and prediction",
        "Clustering and dimensionality reduction"
      ],
      "correctAnswerIndex": 0,
      "explanation": "EM alternates between computing responsibilities and updating parameters."
    },
    {
      "id": 35,
      "questionText": "Scenario: A GMM component has nearly zero weight after EM. Implication?",
      "options": [
        "Component is insignificant; may be removed",
        "Covariance matrix is singular",
        "Model is invalid",
        "Training failed"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Very low weight indicates component contributes little to data representation."
    },
    {
      "id": 36,
      "questionText": "Scenario: Covariance type set to 'spherical'. Effect?",
      "options": [
        "All clusters are circular with equal variance in all directions",
        "EM cannot converge",
        "Clusters can have arbitrary orientation",
        "Covariance ignored"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Spherical covariance assumes isotropic variance for each cluster."
    },
    {
      "id": 37,
      "questionText": "Scenario: Covariance type 'full' in GMM allows:",
      "options": [
        "One-dimensional data only",
        "Elliptical clusters with arbitrary orientation",
        "Only circular clusters",
        "Clusters of equal size"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Full covariance allows each cluster to have a unique covariance matrix."
    },
    {
      "id": 38,
      "questionText": "Scenario: High-dimensional data with GMM. Challenge?",
      "options": [
        "Covariance estimation becomes difficult",
        "EM converges faster",
        "Number of clusters reduces automatically",
        "Probabilities become binary"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Estimating full covariance in high dimensions is prone to overfitting."
    },
    {
      "id": 39,
      "questionText": "Scenario: Using diagonal covariance instead of full. Advantage?",
      "options": [
        "Reduces number of parameters, faster EM",
        "EM fails automatically",
        "Improves cluster overlap",
        "Always increases accuracy"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Diagonal covariance assumes feature independence, reducing parameters."
    },
    {
      "id": 40,
      "questionText": "Scenario: Two clusters have very close means. EM may:",
      "options": [
        "Fail to run",
        "Merge clusters automatically",
        "Assign probabilities reflecting overlap",
        "Ignore one cluster"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Soft assignments reflect uncertainty in overlapping regions."
    },
    {
      "id": 41,
      "questionText": "Scenario: EM initialized with random means may:",
      "options": [
        "Converge to local maxima",
        "Merge clusters automatically",
        "Fail to compute responsibilities",
        "Always find global maximum"
      ],
      "correctAnswerIndex": 0,
      "explanation": "EM is sensitive to initialization; may converge to local optima."
    },
    {
      "id": 42,
      "questionText": "Scenario: GMM applied to anomaly detection. How?",
      "options": [
        "EM ignores outliers automatically",
        "Points with low likelihood under model considered anomalies",
        "Points assigned to smallest cluster are anomalies",
        "Clusters removed, remaining points are anomalies"
      ],
      "correctAnswerIndex": 1,
      "explanation": "GMM can detect outliers by evaluating likelihood of each point."
    },
    {
      "id": 43,
      "questionText": "Scenario: Overfitting in GMM can occur when:",
      "options": [
        "Dataset is small but clusters well-separated",
        "Covariance type is spherical",
        "Initialization uses K-Means",
        "Too many components relative to data size"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Excessive components may fit noise rather than true structure."
    },
    {
      "id": 44,
      "questionText": "Scenario: Selecting number of components with BIC. Lower BIC means:",
      "options": [
        "EM failed",
        "Overfitting",
        "Better balance between fit and complexity",
        "Worse model"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Lower BIC indicates model explains data well without unnecessary complexity."
    },
    {
      "id": 45,
      "questionText": "Scenario: You normalize features before GMM. Benefit?",
      "options": [
        "EM converges slower",
        "Number of components reduces",
        "Prevents dominance by large-scale features",
        "Covariance becomes singular"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Feature scaling ensures all features contribute equally to Gaussian components."
    },
    {
      "id": 46,
      "questionText": "Scenario: You use too few components in GMM. Likely effect?",
      "options": [
        "Covariance becomes negative",
        "Overfitting",
        "EM fails to converge",
        "Underfitting, poor representation of clusters"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Too few Gaussians cannot capture underlying data structure."
    },
    {
      "id": 47,
      "questionText": "Scenario: Two clusters have different variances. Which GMM setting captures this?",
      "options": [
        "Tied covariance",
        "Diagonal covariance only",
        "Full covariance",
        "Spherical covariance"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Full covariance allows different shapes and orientations per cluster."
    },
    {
      "id": 48,
      "questionText": "Scenario: Real-world use of GMM in speaker recognition relies on:",
      "options": [
        "Only frequency features",
        "Decision trees",
        "Modeling probability distribution of feature vectors",
        "Hard cluster labels"
      ],
      "correctAnswerIndex": 2,
      "explanation": "GMM models the distribution of features for each speaker."
    },
    {
      "id": 49,
      "questionText": "Scenario: Image segmentation with GMM. How?",
      "options": [
        "K-Means replaces EM",
        "Pixels assigned randomly",
        "Only grayscale images",
        "Pixels assigned probabilistically to color clusters"
      ],
      "correctAnswerIndex": 3,
      "explanation": "GMM can segment images based on color probability distributions."
    },
    {
      "id": 50,
      "questionText": "Scenario: Overlapping Gaussian clusters, hard assignment used. Effect?",
      "options": [
        "Covariance becomes zero",
        "EM improves accuracy",
        "Soft assignment automatically applied",
        "Information loss, may misclassify points"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Hard labels ignore uncertainty and may misrepresent overlapping regions."
    },
    {
      "id": 51,
      "questionText": "Scenario: You have categorical features. GMM suitability?",
      "options": [
        "Perfectly suitable",
        "Requires only diagonal covariance",
        "Not ideal; GMM assumes continuous features",
        "Number of components is irrelevant"
      ],
      "correctAnswerIndex": 2,
      "explanation": "GMM assumes continuous-valued features for Gaussian distributions."
    },
    {
      "id": 52,
      "questionText": "Scenario: EM converges slowly. Common solutions?",
      "options": [
        "Ignore convergence criteria",
        "Better initialization, feature scaling, or fewer components",
        "Increase number of iterations indefinitely",
        "Switch to K-Means always"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Good initialization and preprocessing improve EM efficiency."
    },
    {
      "id": 53,
      "questionText": "Scenario: GMM for anomaly detection in network traffic. Strategy?",
      "options": [
        "Ignore rare events",
        "Hard assign all points to clusters",
        "Flag low likelihood points as anomalies",
        "Use K-Means to cluster anomalies"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Points with low probability under the model are considered outliers."
    },
    {
      "id": 54,
      "questionText": "Scenario: EM oscillates between two solutions. Likely reason?",
      "options": [
        "Number of components too small",
        "Poor initialization causing local maxima",
        "Covariance matrix full",
        "Using diagonal covariance"
      ],
      "correctAnswerIndex": 1,
      "explanation": "EM can get stuck in local maxima if initial parameters are suboptimal."
    },
    {
      "id": 55,
      "questionText": "Scenario: Soft clustering probability threshold used to assign points. Advantage?",
      "options": [
        "EM fails automatically",
        "Always misclassifies clusters",
        "Allows filtering uncertain points",
        "Covariance ignored"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Thresholding allows flexible assignment based on confidence."
    },
    {
      "id": 56,
      "questionText": "Scenario: Tied covariance for all components. Effect?",
      "options": [
        "All clusters share same shape/orientation",
        "Covariance ignored",
        "Number of components reduced automatically",
        "EM cannot run"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Tied covariance forces all Gaussians to share same covariance matrix."
    },
    {
      "id": 57,
      "questionText": "Scenario: GMM with diagonal covariance and correlated features. Effect?",
      "options": [
        "EM automatically switches to full",
        "Perfect modeling",
        "Covariance fails to compute",
        "Model may be suboptimal due to ignored correlations"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Diagonal covariance ignores feature correlations, which may reduce accuracy."
    },
    {
      "id": 58,
      "questionText": "Scenario: High-dimensional data, small sample size. Solution for GMM?",
      "options": [
        "Always full covariance",
        "Increase number of components",
        "Ignore dimension scaling",
        "Use diagonal covariance or reduce dimensions with PCA"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Reducing parameters via diagonal covariance or PCA helps prevent overfitting."
    },
    {
      "id": 59,
      "questionText": "Scenario: GMM applied on time-series data. Typical strategy?",
      "options": [
        "Switch to K-Means only",
        "Model features extracted per time window",
        "Use raw timestamps directly",
        "Ignore temporal ordering"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Features are extracted per window to apply GMM effectively."
    },
    {
      "id": 60,
      "questionText": "Scenario: You wish to compare two GMMs with different components. Metric?",
      "options": [
        "Silhouette score",
        "Mean squared error",
        "AIC/BIC",
        "Accuracy"
      ],
      "correctAnswerIndex": 2,
      "explanation": "AIC/BIC compare likelihoods while penalizing complexity."
    },
    {
      "id": 61,
      "questionText": "Scenario: EM stops improving log-likelihood. Action?",
      "options": [
        "Reinitialize covariance",
        "Converged; training can stop",
        "Increase components automatically",
        "Reduce number of iterations"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Plateau in log-likelihood indicates convergence."
    },
    {
      "id": 62,
      "questionText": "Scenario: GMM applied on overlapping clusters. Which is true?",
      "options": [
        "Clusters must be separated manually",
        "GMM fails completely",
        "K-Means always better",
        "Soft assignments handle ambiguity better than hard assignments"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Soft probabilistic assignments capture uncertainty in overlapping regions."
    },
    {
      "id": 63,
      "questionText": "Scenario: EM converges to degenerate covariance. Likely cause?",
      "options": [
        "Full covariance required",
        "Component collapsed to single data point",
        "Too few iterations",
        "Random initialization"
      ],
      "correctAnswerIndex": 1,
      "explanation": "A component may shrink variance toward zero, creating numerical issues."
    },
    {
      "id": 64,
      "questionText": "Scenario: Choosing between GMM and K-Means. Advantage of GMM?",
      "options": [
        "Always faster",
        "Works only on spherical clusters",
        "No parameters needed",
        "Handles overlapping, probabilistic clusters"
      ],
      "correctAnswerIndex": 3,
      "explanation": "GMM can model overlap using probabilities, unlike K-Means."
    },
    {
      "id": 65,
      "questionText": "Scenario: GMM with full covariance. Drawback?",
      "options": [
        "EM does not converge",
        "Cannot model elliptical clusters",
        "Higher number of parameters; risk of overfitting",
        "Soft assignment ignored"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Full covariance requires estimating many parameters, sensitive to small datasets."
    },
    {
      "id": 66,
      "questionText": "Scenario: GMM for anomaly detection. Threshold selection?",
      "options": [
        "Use hard assignments only",
        "Ignore low-probability points",
        "Based on likelihood distribution of normal data",
        "Random selection"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Threshold is chosen based on typical likelihood values of normal data."
    },
    {
      "id": 67,
      "questionText": "Scenario: EM alternates but log-likelihood decreases. Cause?",
      "options": [
        "Soft assignments ignored",
        "Convergence achieved",
        "Number of components too low",
        "Numerical instability or rounding errors"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Numerical issues may cause slight decreases; regularization may help."
    },
    {
      "id": 68,
      "questionText": "Scenario: GMM on skewed data. Observation?",
      "options": [
        "Clusters automatically corrected",
        "EM converges faster",
        "Gaussian assumption may be violated",
        "Covariance ignored"
      ],
      "correctAnswerIndex": 2,
      "explanation": "GMM assumes Gaussian distribution; skewed data may reduce accuracy."
    },
    {
      "id": 69,
      "questionText": "Scenario: Using GMM to compress data. How?",
      "options": [
        "Remove clusters randomly",
        "Use only spherical covariance",
        "Switch to K-Means",
        "Represent each point by cluster responsibilities instead of raw features"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Probabilities can serve as a compact representation of original features."
    },
    {
      "id": 70,
      "questionText": "Scenario: GMM applied to multimodal distribution. Advantage?",
      "options": [
        "Models multiple peaks naturally using several Gaussians",
        "Covariance must be diagonal",
        "Cannot handle multimodal data",
        "Requires K-Means preprocessing"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Multiple Gaussian components allow GMM to capture multimodal patterns."
    },
    {
      "id": 71,
      "questionText": "Scenario: You want to model customer segments with GMM. Best approach?",
      "options": [
        "Use K-Means only",
        "Use soft clustering to capture overlapping preferences",
        "Assign each customer randomly",
        "Ignore continuous features"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Soft clustering captures overlapping behavior patterns between segments."
    },
    {
      "id": 72,
      "questionText": "Scenario: Data has outliers. How does GMM handle them?",
      "options": [
        "EM fails automatically",
        "Outliers dominate clusters",
        "Outliers get low probabilities; may need special handling",
        "Clusters merge to include outliers"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Outliers have low likelihood under Gaussian components, reducing their impact."
    },
    {
      "id": 73,
      "questionText": "Scenario: Using EM, you notice very slow convergence. Possible fix?",
      "options": [
        "Switch to hierarchical clustering",
        "Randomly assign clusters",
        "Improve initialization, scale features, or reduce number of components",
        "Increase iterations without changes"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Good initialization and preprocessing improve EM efficiency."
    },
    {
      "id": 74,
      "questionText": "Scenario: You apply GMM to cluster text embeddings. Challenge?",
      "options": [
        "High-dimensionality may make full covariance unstable",
        "GMM works perfectly without change",
        "Soft assignments are ignored",
        "Clusters must be one-dimensional"
      ],
      "correctAnswerIndex": 0,
      "explanation": "High-dimensional embeddings require dimensionality reduction or diagonal covariance."
    },
    {
      "id": 75,
      "questionText": "Scenario: You use GMM with tied covariance. Effect?",
      "options": [
        "EM fails automatically",
        "Clusters become one",
        "Each cluster has unique covariance",
        "All clusters share same covariance matrix"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Tied covariance enforces shared shape/orientation for all Gaussians."
    },
    {
      "id": 76,
      "questionText": "Scenario: GMM model seems overfitted. Possible reasons?",
      "options": [
        "Too many components or full covariance on small data",
        "Diagonal covariance used",
        "EM converged perfectly",
        "Spherical covariance used"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Overfitting occurs when model complexity exceeds data size."
    },
    {
      "id": 77,
      "questionText": "Scenario: You want interpretable clusters with GMM. Strategy?",
      "options": [
        "Soft assignments ignored",
        "Use fewer components and diagonal covariance",
        "Random initialization",
        "Use full covariance and many components"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Fewer components and simpler covariance improve interpretability."
    },
    {
      "id": 78,
      "questionText": "Scenario: You combine GMM with PCA. Purpose?",
      "options": [
        "Ignore low-variance features",
        "Increase number of clusters",
        "EM converges automatically",
        "Reduce dimensionality to stabilize covariance estimation"
      ],
      "correctAnswerIndex": 3,
      "explanation": "PCA reduces features, improving parameter estimation in high-dimensional GMM."
    },
    {
      "id": 79,
      "questionText": "Scenario: GMM applied on customer churn probability. Approach?",
      "options": [
        "Use only binary labels",
        "Switch to linear regression",
        "Hard cluster and ignore overlap",
        "Model feature distribution, assign probabilities to segments"
      ],
      "correctAnswerIndex": 3,
      "explanation": "GMM probabilistically models customer groups for better segmentation."
    },
    {
      "id": 80,
      "questionText": "Scenario: You notice EM stuck in local optimum. Solution?",
      "options": [
        "Use fewer components only",
        "Increase iterations infinitely",
        "Try multiple random initializations",
        "Ignore convergence"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Multiple initializations reduce chance of getting trapped in local maxima."
    },
    {
      "id": 81,
      "questionText": "Scenario: Using GMM for speaker verification. Why suitable?",
      "options": [
        "K-Means performs better",
        "Captures probabilistic feature distributions per speaker",
        "Covariance must be spherical",
        "Hard assignments suffice"
      ],
      "correctAnswerIndex": 1,
      "explanation": "GMM models variability in speaker features effectively."
    },
    {
      "id": 82,
      "questionText": "Scenario: EM applied to data with small clusters. Challenge?",
      "options": [
        "Soft assignments fail",
        "Small clusters may be ignored or collapse",
        "Covariance ignored",
        "EM always finds them"
      ],
      "correctAnswerIndex": 1,
      "explanation": "EM may assign negligible weight to very small clusters."
    },
    {
      "id": 83,
      "questionText": "Scenario: GMM used in anomaly detection for fraud. Key idea?",
      "options": [
        "Transactions are clustered randomly",
        "High-probability transactions flagged",
        "Transactions with low probability under model are flagged",
        "EM ignores rare patterns"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Low-likelihood points are potential anomalies."
    },
    {
      "id": 84,
      "questionText": "Scenario: GMM applied to multimodal sensor readings. Advantage?",
      "options": [
        "EM fails automatically",
        "Single Gaussian suffices",
        "Spherical covariance required",
        "Multiple peaks captured by several Gaussian components"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Multiple Gaussians allow modeling multimodal distributions."
    },
    {
      "id": 85,
      "questionText": "Scenario: You notice EM log-likelihood plateauing early. Interpretation?",
      "options": [
        "EM converged; model parameters stabilized",
        "Covariance ignored",
        "EM failed",
        "Increase components immediately"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Plateau indicates convergence of EM algorithm."
    },
    {
      "id": 86,
      "questionText": "Scenario: GMM with full covariance on small dataset. Risk?",
      "options": [
        "Overfitting due to too many parameters",
        "EM fails automatically",
        "Better modeling",
        "Clusters ignored"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Full covariance requires estimating many parameters, risky for small data."
    },
    {
      "id": 87,
      "questionText": "Scenario: GMM used for image segmentation. Key step?",
      "options": [
        "Only grayscale images allowed",
        "K-Means replacement",
        "Assign pixels probabilistically to color clusters",
        "Ignore soft assignments"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Soft clustering assigns pixels to Gaussian components representing colors."
    },
    {
      "id": 88,
      "questionText": "Scenario: GMM applied to text clustering with embeddings. Key step?",
      "options": [
        "Increase components arbitrarily",
        "Soft assignments ignored",
        "Use dimensionality reduction to stabilize covariance estimation",
        "EM fails automatically"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Reducing dimensionality prevents overfitting in high-dimensional embeddings."
    },
    {
      "id": 89,
      "questionText": "Scenario: GMM with overlapping clusters. Hard labels used. Effect?",
      "options": [
        "Improves EM convergence",
        "Loss of probabilistic information; misclassification possible",
        "EM fails",
        "Covariance ignored"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Hard labels ignore uncertainty in overlapping regions."
    },
    {
      "id": 90,
      "questionText": "Scenario: EM for GMM shows component collapsing. Solution?",
      "options": [
        "Use diagonal covariance always",
        "Reduce number of components only",
        "Regularize covariance to prevent singularities",
        "Ignore component"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Regularization prevents variances from collapsing to zero."
    },
    {
      "id": 91,
      "questionText": "Scenario: Choosing GMM vs K-Means. Advantage?",
      "options": [
        "K-Means always faster",
        "EM not required",
        "GMM ignores probabilities",
        "Soft assignment, handles overlap and ellipsoidal clusters"
      ],
      "correctAnswerIndex": 3,
      "explanation": "GMM models overlapping clusters with probabilistic assignments."
    },
    {
      "id": 92,
      "questionText": "Scenario: GMM applied for speech synthesis. Benefit?",
      "options": [
        "Clusters speakers only",
        "Soft assignments ignored",
        "Models probability distribution of acoustic features",
        "Only spherical clusters allowed"
      ],
      "correctAnswerIndex": 2,
      "explanation": "GMM captures feature distributions needed for realistic speech synthesis."
    },
    {
      "id": 93,
      "questionText": "Scenario: EM fails to converge. Possible reasons?",
      "options": [
        "Too few iterations",
        "Poor initialization, singular covariance, or incompatible data",
        "Full covariance always fails",
        "Soft assignments ignored"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Bad initialization or degenerate covariances can prevent EM convergence."
    },
    {
      "id": 94,
      "questionText": "Scenario: You need probabilistic clustering on 2D sensor data. Choice?",
      "options": [
        "Hierarchical clustering",
        "DBSCAN only",
        "GMM with appropriate covariance type",
        "K-Means only"
      ],
      "correctAnswerIndex": 2,
      "explanation": "GMM provides soft probabilistic clustering for continuous data."
    },
    {
      "id": 95,
      "questionText": "Scenario: GMM used for anomaly detection in machinery. How?",
      "options": [
        "Use hard assignments only",
        "Cluster readings randomly",
        "Flag low-likelihood sensor readings as anomalies",
        "Ignore rare readings"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Points that do not fit any Gaussian component well can indicate anomalies."
    },
    {
      "id": 96,
      "questionText": "Scenario: High-dimensional embeddings, GMM unstable. Solution?",
      "options": [
        "Increase components",
        "Ignore scaling",
        "Reduce dimensions with PCA or use diagonal covariance",
        "Use full covariance only"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Reducing parameters prevents overfitting and stabilizes EM."
    },
    {
      "id": 97,
      "questionText": "Scenario: GMM for multimodal customer behavior. Advantage?",
      "options": [
        "K-Means better",
        "Multiple components capture different behavioral modes",
        "Single Gaussian suffices",
        "Covariance must be spherical"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Different modes of behavior can be modeled with multiple Gaussians."
    },
    {
      "id": 98,
      "questionText": "Scenario: EM converges but log-likelihood decreases occasionally. Cause?",
      "options": [
        "Numerical instability; can use regularization",
        "Covariance ignored",
        "EM failed",
        "Increase components"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Small decreases may occur due to rounding errors; regularization helps."
    },
    {
      "id": 99,
      "questionText": "Scenario: Soft assignment threshold applied. Benefit?",
      "options": [
        "Filter uncertain points or highlight ambiguous memberships",
        "EM fails automatically",
        "Covariance ignored",
        "Always misclassifies clusters"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Thresholding helps decide which points are confidently assigned."
    },
    {
      "id": 100,
      "questionText": "Scenario: GMM applied in finance for risk clustering. Advantage?",
      "options": [
        "Requires categorical data only",
        "Models probability distribution of different risk profiles",
        "Soft assignment ignored",
        "Clusters randomly"
      ],
      "correctAnswerIndex": 1,
      "explanation": "GMM provides probabilistic segmentation of customers or assets by risk levels."
    }
  ]
}