File size: 46,859 Bytes
0d00d62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
{
  "title": "Decision Tree Regression Mastery: 100 MCQs",
  "description": "A comprehensive set of 100 multiple-choice questions designed to teach and test your understanding of Decision Tree Regression, covering basic concepts, splitting criteria, pruning, overfitting, hyperparameter tuning, and real-world scenarios.",
  "questions": [
    {
      "id": 1,
      "questionText": "What is the main goal of Decision Tree Regression?",
      "options": [
        "Reduce dimensionality",
        "Predict continuous target values using a tree structure",
        "Classify data into categories",
        "Cluster data points"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Decision Tree Regression predicts continuous values by splitting the data into subsets based on feature thresholds."
    },
    {
      "id": 2,
      "questionText": "Which criterion is commonly used to decide splits in Decision Tree Regression?",
      "options": [
        "Mean Squared Error (MSE)",
        "Gini Index",
        "Entropy",
        "Silhouette Score"
      ],
      "correctAnswerIndex": 0,
      "explanation": "MSE is commonly used to minimize the variance of the target variable in the child nodes."
    },
    {
      "id": 3,
      "questionText": "What is overfitting in Decision Tree Regression?",
      "options": [
        "When the tree is too shallow",
        "When predictions are always zero",
        "When data is not standardized",
        "When the tree captures noise in the training data"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Overfitting occurs when a tree becomes too complex, capturing noise instead of general patterns."
    },
    {
      "id": 4,
      "questionText": "Which hyperparameter helps control the maximum depth of a Decision Tree?",
      "options": [
        "max_depth",
        "criterion",
        "min_samples_split",
        "gamma"
      ],
      "correctAnswerIndex": 0,
      "explanation": "max_depth limits how deep the tree can grow, preventing overfitting."
    },
    {
      "id": 5,
      "questionText": "Scenario: A Decision Tree is trained with max_depth=None on a small dataset. Observation?",
      "options": [
        "Tree ignores features",
        "Tree likely overfits",
        "Tree underfits",
        "Predictions are zero"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Without depth limitation, the tree can grow too complex and overfit small datasets."
    },
    {
      "id": 6,
      "questionText": "What is min_samples_split in Decision Tree Regression?",
      "options": [
        "Minimum samples required to split an internal node",
        "Maximum number of features used",
        "Maximum depth of the tree",
        "Minimum samples required at a leaf node"
      ],
      "correctAnswerIndex": 0,
      "explanation": "min_samples_split controls when a node can be split, helping to regularize the tree."
    },
    {
      "id": 7,
      "questionText": "Scenario: Decision Tree with very high min_samples_split. Observation?",
      "options": [
        "Tree underfits, predictions may be too coarse",
        "Features ignored",
        "Tree overfits",
        "Predictions perfect"
      ],
      "correctAnswerIndex": 0,
      "explanation": "High min_samples_split prevents many splits, making the tree simpler and possibly underfitting."
    },
    {
      "id": 8,
      "questionText": "Which method can be used to reduce overfitting in Decision Tree Regression?",
      "options": [
        "Using all features without restriction",
        "Pruning",
        "Reducing training data",
        "Increasing max_depth without limit"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Pruning removes unnecessary splits to improve generalization and prevent overfitting."
    },
    {
      "id": 9,
      "questionText": "What is the role of a leaf node in Decision Tree Regression?",
      "options": [
        "Counts the number of features",
        "Measures feature importance",
        "Contains the predicted value",
        "Decides feature splits"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Leaf nodes hold the predicted output value for the observations in that node."
    },
    {
      "id": 10,
      "questionText": "Scenario: Tree is very deep and training error is near zero but test error is high. Observation?",
      "options": [
        "Tree ignores features",
        "Tree is overfitting",
        "Tree predictions are unbiased",
        "Tree is underfitting"
      ],
      "correctAnswerIndex": 1,
      "explanation": "A very deep tree may perfectly fit the training data but fail to generalize, causing overfitting."
    },
    {
      "id": 11,
      "questionText": "Which splitting strategy minimizes variance in Decision Tree Regression?",
      "options": [
        "Maximizing entropy",
        "Maximizing Gini index",
        "Choosing splits that minimize MSE in child nodes",
        "Random splits"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Splits are chosen to minimize the mean squared error of target values in child nodes."
    },
    {
      "id": 12,
      "questionText": "Scenario: Dataset has categorical features with many levels. Decision Tree Observation?",
      "options": [
        "Tree may create too many splits, overfitting possible",
        "Tree ignores categorical features",
        "Tree always underfits",
        "Tree cannot handle categorical data"
      ],
      "correctAnswerIndex": 0,
      "explanation": "High-cardinality categorical features can lead to many splits, increasing overfitting risk."
    },
    {
      "id": 13,
      "questionText": "What does min_samples_leaf control?",
      "options": [
        "Minimum number of samples required in a leaf node",
        "Kernel choice",
        "Maximum depth of the tree",
        "Minimum split threshold"
      ],
      "correctAnswerIndex": 0,
      "explanation": "min_samples_leaf ensures leaf nodes have a minimum number of samples, preventing overfitting to very small subsets."
    },
    {
      "id": 14,
      "questionText": "Scenario: Decision Tree with min_samples_leaf=10 on small dataset. Observation?",
      "options": [
        "Tree may underfit, predictions coarser",
        "Leaf nodes empty",
        "Tree ignores features",
        "Tree overfits"
      ],
      "correctAnswerIndex": 0,
      "explanation": "High min_samples_leaf prevents fine splits, which may underfit small datasets."
    },
    {
      "id": 15,
      "questionText": "Which metric is used to measure feature importance in Decision Tree Regression?",
      "options": [
        "Silhouette Score",
        "Entropy",
        "Reduction in MSE due to splits on the feature",
        "Gini Index"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Features contributing more to variance reduction are considered more important."
    },
    {
      "id": 16,
      "questionText": "Scenario: Feature importance shows some features are zero. Observation?",
      "options": [
        "They are most important",
        "Tree ignored all features",
        "Those features do not contribute to splits",
        "Training error is zero"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Features with zero importance do not improve splits in the tree."
    },
    {
      "id": 17,
      "questionText": "Which is a disadvantage of Decision Tree Regression?",
      "options": [
        "Always underfits",
        "Cannot handle categorical data",
        "Prone to overfitting if not regularized",
        "Cannot handle continuous data"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Decision trees can overfit training data without depth or sample restrictions."
    },
    {
      "id": 18,
      "questionText": "Scenario: Decision Tree applied to noisy dataset without restrictions. Observation?",
      "options": [
        "Tree ignores features",
        "Tree underfits",
        "Tree overfits noise",
        "Training error high"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Unrestricted trees fit all variations including noise, causing overfitting."
    },
    {
      "id": 19,
      "questionText": "Scenario: Decision Tree applied with max_features='sqrt'. Observation?",
      "options": [
        "All features ignored",
        "Training error zero",
        "Random subset of features considered for splits, reduces overfitting",
        "Tree depth unlimited"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Limiting features per split reduces variance and improves generalization."
    },
    {
      "id": 20,
      "questionText": "Scenario: Tree with very small max_leaf_nodes. Observation?",
      "options": [
        "Tree ignores features",
        "Tree overfits",
        "Tree underfits due to limited leaves",
        "Training error zero"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Restricting leaves reduces tree complexity, which may lead to underfitting."
    },
    {
      "id": 21,
      "questionText": "Scenario: Tree applied to dataset with continuous features. Observation: splits based on thresholds. Why?",
      "options": [
        "Tree uses Gini",
        "Decision Tree Regression splits continuous features using thresholds to minimize variance",
        "Tree uses entropy",
        "Tree ignores continuous features"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Continuous features are split at values that minimize MSE in child nodes."
    },
    {
      "id": 22,
      "questionText": "Scenario: Tree applied with min_impurity_decrease=0.01. Observation?",
      "options": [
        "Tree always overfits",
        "Tree ignores features",
        "Only splits that reduce impurity by 0.01 or more are made, helps prevent overfitting",
        "Training error zero"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Setting a minimum impurity decrease prevents unnecessary splits, regularizing the tree."
    },
    {
      "id": 23,
      "questionText": "Scenario: Tree applied to dataset with correlated features. Observation?",
      "options": [
        "Tree fails",
        "Tree may select one correlated feature for splits, ignoring others",
        "Tree overfits all features",
        "Tree underfits"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Decision trees choose splits greedily; correlated features may be ignored once one is used."
    },
    {
      "id": 24,
      "questionText": "Scenario: Decision Tree applied to dataset with outliers. Observation?",
      "options": [
        "Tree ignores outliers",
        "Tree may overfit outliers if not pruned",
        "Tree underfits",
        "Training error zero"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Extreme values can cause splits that focus too much on outliers, overfitting the model."
    },
    {
      "id": 25,
      "questionText": "Scenario: Decision Tree applied with random_state set. Observation?",
      "options": [
        "Tree overfits",
        "Tree underfits",
        "Randomly ignores features",
        "Ensures reproducible results"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Setting random_state makes the tree building process deterministic, allowing reproducibility."
    },
    {
      "id": 26,
      "questionText": "Scenario: Decision Tree applied to housing dataset with max_depth=3. Observation?",
      "options": [
        "Tree overfits",
        "Training error zero",
        "Tree may underfit due to shallow depth",
        "Tree ignores features"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Shallow trees may fail to capture complex patterns, leading to underfitting."
    },
    {
      "id": 27,
      "questionText": "Scenario: Tree trained on noisy stock prices with max_depth=None. Observation?",
      "options": [
        "Tree underfits",
        "Tree overfits noise, poor generalization",
        "Features ignored",
        "Predictions smooth"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Unlimited depth allows the tree to capture every fluctuation, including noise."
    },
    {
      "id": 28,
      "questionText": "Scenario: Tree applied to dataset with outliers. Observation: pruning applied. Effect?",
      "options": [
        "Tree ignores all data",
        "Tree underfits entirely",
        "Reduces overfitting to outliers, better generalization",
        "Training error zero"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Pruning removes unnecessary splits caused by outliers, improving generalization."
    },
    {
      "id": 29,
      "questionText": "Scenario: Decision Tree applied with min_samples_split=50 on a dataset of 500 samples. Observation?",
      "options": [
        "Tree overfits",
        "Tree is simpler, may underfit local patterns",
        "Tree ignores features",
        "Training error zero"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Requiring 50 samples to split reduces the number of splits and may miss finer patterns."
    },
    {
      "id": 30,
      "questionText": "Scenario: Tree applied with min_samples_leaf=20 on small dataset. Observation?",
      "options": [
        "Tree underfits, coarse predictions",
        "Training error zero",
        "Tree overfits",
        "Leaf nodes empty"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Minimum leaf size prevents small leaves, simplifying the tree and possibly underfitting."
    },
    {
      "id": 31,
      "questionText": "Scenario: Tree applied to dataset with 1000 features. Observation: max_features='sqrt'. Effect?",
      "options": [
        "Training error zero",
        "Tree ignores features",
        "Tree depth unlimited",
        "Random subset considered for splits, reduces overfitting"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Using only a subset of features per split helps control variance and prevents overfitting."
    },
    {
      "id": 32,
      "questionText": "Scenario: Tree applied with max_leaf_nodes=10. Observation?",
      "options": [
        "Tree underfits due to limited complexity",
        "Tree ignores features",
        "Tree overfits",
        "Training error zero"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Limiting the number of leaves reduces tree complexity, potentially causing underfitting."
    },
    {
      "id": 33,
      "questionText": "Scenario: Tree applied to dataset with highly correlated features. Observation?",
      "options": [
        "Tree uses all features equally",
        "Tree underfits",
        "Tree fails to train",
        "Tree may favor one correlated feature, ignoring others"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Greedy splitting selects one feature and ignores redundant correlated features."
    },
    {
      "id": 34,
      "questionText": "Scenario: Decision Tree applied with min_impurity_decrease=0.05. Observation?",
      "options": [
        "Tree ignores features",
        "Training error zero",
        "Tree always overfits",
        "Only splits reducing impurity ≥0.05 are made, regularizes tree"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Setting minimum impurity decrease prevents unnecessary splits, improving generalization."
    },
    {
      "id": 35,
      "questionText": "Scenario: Tree applied to dataset with categorical features of high cardinality. Observation?",
      "options": [
        "Tree may overfit due to many splits",
        "Tree underfits",
        "Tree fails to train",
        "Tree ignores categories"
      ],
      "correctAnswerIndex": 0,
      "explanation": "High-cardinality categorical features can lead to over-complex splits and overfitting."
    },
    {
      "id": 36,
      "questionText": "Scenario: Decision Tree applied to time-series dataset without feature engineering. Observation?",
      "options": [
        "Tree ignores features",
        "Training error zero",
        "Tree overfits",
        "Tree may not capture temporal patterns"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Decision trees cannot inherently capture sequential patterns without engineered features."
    },
    {
      "id": 37,
      "questionText": "Scenario: Tree applied to dataset with extreme outliers. Observation?",
      "options": [
        "Tree ignores outliers automatically",
        "Tree underfits",
        "Tree may overfit to extreme values if not regularized",
        "Training error zero"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Outliers can create splits that distort predictions, overfitting the model."
    },
    {
      "id": 38,
      "questionText": "Scenario: Decision Tree applied with random_state set. Observation?",
      "options": [
        "Results are reproducible",
        "Training error zero",
        "Tree underfits",
        "Tree ignores features"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Setting random_state ensures deterministic tree construction, making results reproducible."
    },
    {
      "id": 39,
      "questionText": "Scenario: Tree applied with max_depth=5 and high noise. Observation?",
      "options": [
        "Tree ignores features",
        "Tree perfectly fits data",
        "May underfit some patterns, partially overfit noise",
        "Training error zero"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Limited depth may underfit trends but still capture some noise, leading to mixed performance."
    },
    {
      "id": 40,
      "questionText": "Scenario: Decision Tree applied to dataset with missing values. Observation?",
      "options": [
        "Tree underfits",
        "Tree ignores missing values automatically",
        "Tree cannot handle missing values directly; preprocessing needed",
        "Tree overfits"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Decision trees require complete data or proper imputation before training."
    },
    {
      "id": 41,
      "questionText": "Scenario: Decision Tree applied to dataset with highly skewed target. Observation?",
      "options": [
        "Tree underfits",
        "Tree ignores skew",
        "Tree predictions may be biased toward dominant target values",
        "Tree perfectly predicts"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Skewed targets can cause trees to favor majority values, reducing accuracy on rare cases."
    },
    {
      "id": 42,
      "questionText": "Scenario: Tree applied to dataset with continuous and categorical features. Observation?",
      "options": [
        "Tree ignores continuous features",
        "Tree fails",
        "Tree ignores categorical features",
        "Tree can handle both, splits on thresholds for continuous and categories for categorical"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Decision trees can split both types, using appropriate thresholds or categories."
    },
    {
      "id": 43,
      "questionText": "Scenario: Decision Tree applied with criterion='mse'. Observation?",
      "options": [
        "Tree ignores criterion",
        "Splits minimize mean squared error in child nodes",
        "Splits maximize entropy",
        "Splits maximize Gini index"
      ],
      "correctAnswerIndex": 1,
      "explanation": "MSE is used to reduce variance and improve regression accuracy at splits."
    },
    {
      "id": 44,
      "questionText": "Scenario: Tree applied with very small min_samples_split. Observation?",
      "options": [
        "Tree underfits",
        "Tree may overfit by creating many small splits",
        "Training error zero",
        "Tree ignores features"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Small min_samples_split allows splits on tiny subsets, causing overfitting."
    },
    {
      "id": 45,
      "questionText": "Scenario: Tree applied with max_features=None on high-dimensional data. Observation?",
      "options": [
        "Tree ignores some features",
        "Tree underfits",
        "Tree considers all features at each split, may overfit",
        "Training error zero"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Using all features increases variance and can lead to overfitting."
    },
    {
      "id": 46,
      "questionText": "Scenario: Tree applied to dataset with many redundant features. Observation?",
      "options": [
        "Tree underfits",
        "Tree fails",
        "Tree uses all features equally",
        "Tree may ignore redundant features after selecting one correlated feature"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Greedy splitting selects the most informative feature and ignores others."
    },
    {
      "id": 47,
      "questionText": "Scenario: Decision Tree applied to small dataset. Observation: high variance in predictions across different train/test splits. Reason?",
      "options": [
        "Tree always underfits",
        "Training error zero",
        "Tree ignores features",
        "Trees are sensitive to small data changes, high variance"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Small datasets cause instability in tree splits, resulting in high variance."
    },
    {
      "id": 48,
      "questionText": "Scenario: Tree applied to a dataset with uniform target values. Observation?",
      "options": [
        "Tree overfits",
        "Tree will have shallow depth; predictions equal to uniform target",
        "Tree underfits",
        "Training error zero"
      ],
      "correctAnswerIndex": 1,
      "explanation": "If target values are uniform, splits do not reduce variance; tree remains shallow."
    },
    {
      "id": 49,
      "questionText": "Scenario: Tree applied to dataset with features scaled differently. Observation?",
      "options": [
        "Tree underfits",
        "Training error zero",
        "Decision Tree unaffected by feature scaling",
        "Tree overfits"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Decision Trees are scale-invariant; feature scaling does not affect splits."
    },
    {
      "id": 50,
      "questionText": "Scenario: Decision Tree applied with max_depth=10, min_samples_leaf=5. Observation?",
      "options": [
        "Tree balances depth and leaf size, reducing overfitting",
        "Tree ignores features",
        "Tree overfits",
        "Tree underfits"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Limiting depth and minimum leaf samples helps regularize the tree and improve generalization."
    },
    {
      "id": 51,
      "questionText": "Scenario: Decision Tree applied to financial dataset with max_depth=None and min_samples_split=2. Observation?",
      "options": [
        "Tree underfits",
        "Tree likely overfits due to unlimited depth and small splits",
        "Tree ignores features",
        "Predictions smooth"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Unlimited depth and tiny splits allow the tree to capture all noise, causing overfitting."
    },
    {
      "id": 52,
      "questionText": "Scenario: Tree applied to dataset with extreme outliers. Observation: min_samples_leaf=10 applied. Effect?",
      "options": [
        "Tree ignores features",
        "Tree overfits outliers",
        "Tree becomes more robust to outliers",
        "Training error zero"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Minimum leaf size prevents leaves from fitting extreme individual outliers, improving robustness."
    },
    {
      "id": 53,
      "questionText": "Scenario: Tree applied to housing dataset. Observation: max_features='sqrt' used. Benefit?",
      "options": [
        "Tree ignores most features",
        "Tree depth unlimited",
        "Reduces variance and prevents overfitting by using feature subsets at each split",
        "Tree underfits"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Random subsets per split regularize the tree, balancing bias and variance."
    },
    {
      "id": 54,
      "questionText": "Scenario: Decision Tree applied with criterion='friedman_mse'. Observation?",
      "options": [
        "Tree ignores MSE",
        "Tree underfits",
        "Tree fails",
        "Optimized for boosting algorithms, may improve split selection"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Friedman MSE is designed for boosting, accounting for residuals in regression tasks."
    },
    {
      "id": 55,
      "questionText": "Scenario: Tree applied to small dataset with many features. Observation: high variance in predictions. Reason?",
      "options": [
        "Tree ignores features",
        "Training error zero",
        "Greedy splits sensitive to small changes, causing high variance",
        "Tree underfits"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Small datasets are prone to unstable splits, resulting in varying predictions."
    },
    {
      "id": 56,
      "questionText": "Scenario: Tree applied with max_leaf_nodes=15. Observation?",
      "options": [
        "Tree overfits",
        "Limits complexity, helps prevent overfitting",
        "Tree ignores features",
        "Tree underfits completely"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Restricting leaves reduces tree complexity, acting as regularization."
    },
    {
      "id": 57,
      "questionText": "Scenario: Tree applied to dataset with categorical features of high cardinality. Observation?",
      "options": [
        "Tree ignores categorical features",
        "Tree may overfit due to numerous splits on categories",
        "Tree fails",
        "Tree underfits"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Many categories can produce too many splits, increasing risk of overfitting."
    },
    {
      "id": 58,
      "questionText": "Scenario: Decision Tree applied to time-series dataset without lag features. Observation?",
      "options": [
        "Tree underfits",
        "Tree may not capture temporal dependencies",
        "Training error zero",
        "Tree overfits"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Decision Trees cannot inherently model sequences; engineered features like lagged variables are needed."
    },
    {
      "id": 59,
      "questionText": "Scenario: Tree applied with min_impurity_decrease=0.02. Observation?",
      "options": [
        "Tree ignores features",
        "Tree always overfits",
        "Only splits that reduce impurity ≥0.02 are made, preventing overfitting",
        "Training error zero"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Minimum impurity decrease restricts splits, acting as a regularization technique."
    },
    {
      "id": 60,
      "questionText": "Scenario: Decision Tree applied with max_depth=8, min_samples_leaf=5 on noisy dataset. Observation?",
      "options": [
        "Tree overfits",
        "Tree balances depth and leaf size, reducing overfitting",
        "Tree ignores features",
        "Tree underfits completely"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Combining depth limit and minimum leaf size regularizes the tree for better generalization."
    },
    {
      "id": 61,
      "questionText": "Scenario: Tree applied to dataset with uniform target values. Observation?",
      "options": [
        "Tree remains shallow, predicts uniform target",
        "Training error zero",
        "Tree overfits",
        "Tree underfits"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Uniform targets do not create variance; tree does not split further."
    },
    {
      "id": 62,
      "questionText": "Scenario: Tree applied with max_depth=5 on dataset with strong non-linear patterns. Observation?",
      "options": [
        "Tree may underfit due to limited depth",
        "Tree ignores features",
        "Tree overfits",
        "Training error zero"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Shallow trees cannot capture complex patterns, causing underfitting."
    },
    {
      "id": 63,
      "questionText": "Scenario: Decision Tree applied to financial dataset with high outlier presence. Observation?",
      "options": [
        "Tree underfits",
        "Tree splits may overfit outliers without pruning or min_samples_leaf",
        "Tree ignores outliers automatically",
        "Training error zero"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Extreme values can cause splits that focus too much on outliers."
    },
    {
      "id": 64,
      "questionText": "Scenario: Tree applied to dataset with missing values. Observation?",
      "options": [
        "Tree ignores missing values automatically",
        "Tree overfits",
        "Tree requires imputation; cannot handle missing values directly",
        "Tree underfits"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Decision Trees need complete data or preprocessing to handle missing values."
    },
    {
      "id": 65,
      "questionText": "Scenario: Tree applied with max_features=None on high-dimensional dataset. Observation?",
      "options": [
        "Tree ignores some features",
        "Tree underfits",
        "Training error zero",
        "Tree considers all features per split, may overfit"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Using all features at each split increases variance and risk of overfitting."
    },
    {
      "id": 66,
      "questionText": "Scenario: Tree applied with very small min_samples_split. Observation?",
      "options": [
        "Tree may overfit due to tiny splits",
        "Tree ignores features",
        "Tree underfits",
        "Training error zero"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Small min_samples_split allows splitting on tiny subsets, increasing overfitting risk."
    },
    {
      "id": 67,
      "questionText": "Scenario: Tree applied to dataset with skewed target distribution. Observation?",
      "options": [
        "Tree underfits",
        "Tree ignores skew",
        "Tree may bias predictions toward dominant target values",
        "Tree perfectly predicts"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Skewed targets can bias splits toward majority values, reducing accuracy for minority ranges."
    },
    {
      "id": 68,
      "questionText": "Scenario: Tree applied with random_state set. Observation?",
      "options": [
        "Training error zero",
        "Tree ignores features",
        "Ensures reproducible results",
        "Tree underfits"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Setting random_state ensures deterministic tree construction."
    },
    {
      "id": 69,
      "questionText": "Scenario: Tree applied with max_depth=10 and min_samples_leaf=2 on noisy dataset. Observation?",
      "options": [
        "Tree underfits",
        "May overfit noise despite some leaf constraints",
        "Tree ignores features",
        "Training error zero"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Even with min_samples_leaf=2, deep trees can still overfit noisy data."
    },
    {
      "id": 70,
      "questionText": "Scenario: Tree applied to dataset with continuous and categorical features. Observation?",
      "options": [
        "Tree can handle both; splits thresholds for continuous and categories for categorical",
        "Tree fails",
        "Tree ignores categorical features",
        "Tree ignores continuous features"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Decision Trees split both types appropriately."
    },
    {
      "id": 71,
      "questionText": "Scenario: Tree applied to dataset with correlated features. Observation?",
      "options": [
        "Tree fails",
        "Tree underfits",
        "Tree uses all features equally",
        "Tree may select one correlated feature for split, ignoring others"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Greedy splits select the most informative feature and ignore redundant correlated features."
    },
    {
      "id": 72,
      "questionText": "Scenario: Tree applied to small dataset. Observation: prediction varies with different train/test splits. Reason?",
      "options": [
        "High variance due to sensitivity to small data changes",
        "Tree always underfits",
        "Training error zero",
        "Tree ignores features"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Small datasets cause unstable splits, leading to high variance."
    },
    {
      "id": 73,
      "questionText": "Scenario: Tree applied with max_depth=6 on dataset with complex patterns. Observation?",
      "options": [
        "Tree may underfit due to limited depth",
        "Training error zero",
        "Tree overfits",
        "Tree ignores features"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Limited depth restricts tree complexity and may underfit complex relationships."
    },
    {
      "id": 74,
      "questionText": "Scenario: Tree applied to dataset with features scaled differently. Observation?",
      "options": [
        "Tree overfits",
        "Tree underfits",
        "Training error zero",
        "Decision Tree is scale-invariant; scaling has no effect"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Decision Trees do not rely on feature magnitudes; scaling does not affect splits."
    },
    {
      "id": 75,
      "questionText": "Scenario: Decision Tree applied with max_depth=8, min_samples_leaf=4. Observation?",
      "options": [
        "Tree overfits",
        "Tree underfits",
        "Tree ignores features",
        "Tree balances depth and leaf size, reducing overfitting"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Combination of depth and leaf constraints helps tree generalize better."
    },
    {
      "id": 76,
      "questionText": "Scenario: Tree applied to very small dataset with max_depth=None. Observation?",
      "options": [
        "Tree underfits",
        "Training error high",
        "Tree ignores features",
        "Tree highly overfits, predictions unstable"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Unlimited depth on small data leads to capturing noise, causing overfitting and instability."
    },
    {
      "id": 77,
      "questionText": "Scenario: Decision Tree applied with min_samples_split very high. Observation?",
      "options": [
        "Tree underfits due to few splits",
        "Tree ignores features",
        "Tree overfits",
        "Training error zero"
      ],
      "correctAnswerIndex": 0,
      "explanation": "High min_samples_split prevents many splits, simplifying the tree and possibly underfitting."
    },
    {
      "id": 78,
      "questionText": "Scenario: Tree applied with max_features=1 on dataset with 50 features. Observation?",
      "options": [
        "Tree overfits",
        "Tree underfits completely",
        "Tree uses all features equally",
        "Tree uses only one feature per split, reduces overfitting but may underfit"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Limiting to one feature per split introduces randomness, reducing variance but may increase bias."
    },
    {
      "id": 79,
      "questionText": "Scenario: Tree applied to dataset with extreme outliers in target. Observation?",
      "options": [
        "Tree may create leaves specifically fitting outliers, overfitting",
        "Tree ignores outliers automatically",
        "Training error zero",
        "Tree underfits"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Decision Trees can focus on extreme values, creating splits that overfit outliers."
    },
    {
      "id": 80,
      "questionText": "Scenario: Tree applied to dataset with skewed categorical features. Observation?",
      "options": [
        "Tree may bias splits toward frequent categories",
        "Tree ignores categories",
        "Tree underfits",
        "Tree perfectly predicts"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Highly imbalanced categories influence the tree to favor majority categories in splits."
    },
    {
      "id": 81,
      "questionText": "Scenario: Tree applied to dataset with missing values. Observation?",
      "options": [
        "Tree overfits",
        "Tree requires preprocessing; cannot handle missing values directly",
        "Tree ignores missing values automatically",
        "Tree underfits"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Decision Trees need complete data or imputation before training."
    },
    {
      "id": 82,
      "questionText": "Scenario: Tree applied with criterion='poisson'. Observation?",
      "options": [
        "Tree ignores criterion",
        "Tree overfits",
        "Optimized for count data, splits minimize Poisson deviance",
        "Tree underfits"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Poisson criterion is used for regression tasks with count targets."
    },
    {
      "id": 83,
      "questionText": "Scenario: Tree applied to dataset with both continuous and categorical features. Observation?",
      "options": [
        "Tree handles both; continuous via thresholds, categorical via category splits",
        "Tree ignores continuous features",
        "Tree ignores categorical features",
        "Tree fails"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Decision Trees split both types appropriately."
    },
    {
      "id": 84,
      "questionText": "Scenario: Tree applied to time-series dataset without feature engineering. Observation?",
      "options": [
        "Tree overfits",
        "Tree underfits",
        "Training error zero",
        "Tree may not capture temporal dependencies"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Decision Trees require features like lag variables to capture temporal patterns."
    },
    {
      "id": 85,
      "questionText": "Scenario: Tree applied with max_depth=3 on dataset with complex non-linear relationships. Observation?",
      "options": [
        "Tree underfits due to shallow depth",
        "Training error zero",
        "Tree ignores features",
        "Tree overfits"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Shallow depth limits the ability to capture complex patterns, leading to underfitting."
    },
    {
      "id": 86,
      "questionText": "Scenario: Tree applied with min_impurity_decrease=0.1. Observation?",
      "options": [
        "Tree ignores features",
        "Training error zero",
        "Only splits reducing impurity ≥0.1 are allowed, regularizing tree",
        "Tree overfits"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Minimum impurity decrease prevents unnecessary splits, controlling complexity."
    },
    {
      "id": 87,
      "questionText": "Scenario: Tree applied to dataset with skewed target values. Observation?",
      "options": [
        "Tree underfits",
        "Tree ignores skew",
        "Tree perfectly predicts",
        "Tree may bias predictions toward dominant target values"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Skewed targets can bias splits toward majority values, reducing accuracy for minority ranges."
    },
    {
      "id": 88,
      "questionText": "Scenario: Tree applied with very small min_samples_leaf. Observation?",
      "options": [
        "Tree ignores features",
        "Tree may overfit by creating tiny leaves",
        "Training error zero",
        "Tree underfits"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Small leaves can cause overfitting to minor fluctuations or noise."
    },
    {
      "id": 89,
      "questionText": "Scenario: Tree applied with max_leaf_nodes=5. Observation?",
      "options": [
        "Tree underfits due to limited leaf complexity",
        "Tree ignores features",
        "Training error zero",
        "Tree overfits"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Restricting leaves limits the tree's ability to capture detailed patterns."
    },
    {
      "id": 90,
      "questionText": "Scenario: Tree applied with max_features=None on high-dimensional data. Observation?",
      "options": [
        "Tree ignores some features",
        "Tree considers all features per split, may overfit",
        "Training error zero",
        "Tree underfits"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Using all features increases variance, risking overfitting."
    },
    {
      "id": 91,
      "questionText": "Scenario: Tree applied to dataset with correlated features. Observation?",
      "options": [
        "Tree may select one correlated feature, ignoring others",
        "Tree underfits",
        "Tree uses all features equally",
        "Tree fails"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Greedy splits pick the most informative feature and ignore redundant ones."
    },
    {
      "id": 92,
      "questionText": "Scenario: Tree applied to dataset with small sample size. Observation?",
      "options": [
        "Training error zero",
        "Tree underfits",
        "Predictions are unstable across train/test splits due to high variance",
        "Tree ignores features"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Small datasets cause instability in splits, producing high variance predictions."
    },
    {
      "id": 93,
      "questionText": "Scenario: Tree applied to dataset with extreme noise. Observation?",
      "options": [
        "Tree ignores features",
        "Training error zero",
        "Tree underfits",
        "Tree may overfit noise without regularization"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Unrestricted trees capture noise, reducing generalization performance."
    },
    {
      "id": 94,
      "questionText": "Scenario: Tree applied with max_depth=6, min_samples_leaf=5 on noisy dataset. Observation?",
      "options": [
        "Tree balances complexity and leaf constraints, better generalization",
        "Tree underfits",
        "Tree ignores features",
        "Tree overfits"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Combining depth and leaf constraints regularizes the tree for improved generalization."
    },
    {
      "id": 95,
      "questionText": "Scenario: Tree applied to dataset with continuous and categorical features. Observation?",
      "options": [
        "Tree ignores categorical features",
        "Tree fails",
        "Tree ignores continuous features",
        "Tree can handle both; splits thresholds for continuous and categories for categorical"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Decision Trees split both feature types appropriately."
    },
    {
      "id": 96,
      "questionText": "Scenario: Tree applied with random_state set. Observation?",
      "options": [
        "Training error zero",
        "Results reproducible across runs",
        "Tree underfits",
        "Tree ignores features"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Setting random_state ensures deterministic tree construction."
    },
    {
      "id": 97,
      "questionText": "Scenario: Tree applied to dataset with highly imbalanced categorical features. Observation?",
      "options": [
        "Tree underfits",
        "Tree perfectly predicts",
        "Splits biased toward frequent categories, may reduce accuracy for rare categories",
        "Tree ignores categories"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Imbalanced categories influence split decisions, potentially causing bias."
    },
    {
      "id": 98,
      "questionText": "Scenario: Tree applied to dataset with missing values. Observation?",
      "options": [
        "Tree underfits",
        "Requires imputation or preprocessing",
        "Tree overfits",
        "Tree ignores missing values automatically"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Decision Trees cannot handle missing values directly; preprocessing is required."
    },
    {
      "id": 99,
      "questionText": "Scenario: Tree applied to high-dimensional data with max_depth=None. Observation?",
      "options": [
        "Tree may overfit due to unlimited depth and many features",
        "Tree ignores features",
        "Tree underfits",
        "Training error zero"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Unlimited depth with high-dimensional features leads to over-complex splits and overfitting."
    },
    {
      "id": 100,
      "questionText": "Scenario: Decision Tree applied with max_depth=8, min_samples_leaf=4, max_features='sqrt'. Observation?",
      "options": [
        "Tree underfits",
        "Tree overfits",
        "Tree ignores features",
        "Tree balances depth, leaf size, and feature selection for improved generalization"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Combining depth limit, leaf constraint, and feature subset selection regularizes the tree effectively."
    }
  ]
}