File size: 76,895 Bytes
6df08a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9aa563a
 
 
 
 
 
 
8b9520c
 
 
 
 
 
 
 
 
 
 
f63c157
 
 
 
9aa563a
 
6df08a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f63c157
 
241f112
 
 
 
8b9520c
 
241f112
 
 
f63c157
8b9520c
 
f63c157
 
8b9520c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f63c157
 
 
a237683
a9f7f67
0d272f9
 
 
 
 
 
 
e189d4a
 
5ea8c87
 
 
 
173bfdb
0d272f9
 
 
a237683
c3bc66a
6c87590
9aa563a
 
0d272f9
 
 
 
 
 
 
 
 
 
9aa563a
0d272f9
a9f7f67
 
 
 
9aa563a
0d272f9
a9f7f67
 
0d272f9
9aa563a
0d272f9
 
 
cf4c5a3
 
 
9aa563a
8418bcc
9aa563a
 
 
0d272f9
 
 
 
cf4c5a3
0d272f9
9aa563a
 
cf4c5a3
9aa563a
 
 
cf4c5a3
 
 
 
 
 
200930d
0d272f9
200930d
0d272f9
3df33dc
9aa563a
e280b3b
0d272f9
9aa563a
200930d
3df33dc
9aa563a
0d272f9
173bfdb
0d272f9
 
 
173bfdb
 
 
0d272f9
173bfdb
 
 
 
 
0d272f9
 
 
173bfdb
 
 
0d272f9
 
 
 
 
 
173bfdb
9aa563a
 
 
 
976a3bd
6bdd4f9
9aa563a
 
 
 
 
 
 
0d272f9
 
 
 
 
 
f90ed92
f16dc06
5ea8c87
 
 
 
 
9aa563a
5ea8c87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9aa563a
bfc3c3f
f90ed92
9aa563a
6df08a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
076be4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76d7e0d
 
 
 
6df08a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb6c48c
 
 
6df08a1
bb6c48c
 
 
6df08a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76d7e0d
 
 
 
 
 
 
6df08a1
 
 
 
 
76d7e0d
 
 
 
 
 
6df08a1
 
 
 
 
 
76d7e0d
 
 
 
 
 
 
 
 
 
6df08a1
 
 
 
 
76d7e0d
 
 
 
 
 
 
 
 
 
 
6df08a1
 
 
 
 
76d7e0d
 
 
 
 
 
6df08a1
 
 
 
 
 
76d7e0d
 
 
 
 
6df08a1
 
 
 
 
76d7e0d
 
 
 
 
 
 
6df08a1
 
 
 
 
76d7e0d
 
 
 
 
 
6df08a1
 
 
 
 
76d7e0d
 
 
 
 
6df08a1
 
 
 
 
76d7e0d
 
 
 
 
 
6df08a1
 
 
 
 
76d7e0d
 
 
 
 
 
 
6df08a1
 
 
 
 
76d7e0d
 
 
 
6df08a1
 
 
 
 
 
76d7e0d
 
 
 
6df08a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0081b90
7880fc2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6df08a1
 
 
 
 
 
 
 
 
 
 
 
 
 
7880fc2
 
 
6df08a1
 
 
 
 
 
 
 
 
 
7880fc2
6df08a1
 
 
 
 
 
 
 
 
 
 
 
195c21c
 
 
 
7880fc2
195c21c
 
 
 
 
 
 
 
 
 
 
6df08a1
 
 
195c21c
 
 
 
 
6df08a1
195c21c
7880fc2
6df08a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
from flask import Flask, render_template, request, jsonify
import numpy as np
import pandas as pd
import joblib
import os
from sklearn.svm import SVR
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import StandardScaler
from sklearn.ensemble import RandomForestClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn import svm
from sklearn.naive_bayes import GaussianNB # <--- Add this import
from sklearn.feature_extraction.text import CountVectorizer
from textblob import TextBlob
import traceback
from flask_cors import CORS
from werkzeug.utils import secure_filename # For secure file names
import io # To read CSV from memory
import re
from sklearn.cluster import KMeans, DBSCAN
from PIL import Image
import matplotlib.pyplot as plt
from joblib import load  # ✅ This is the missing line
import traceback
import pickle
from sklearn.svm import SVC
from sklearn.datasets import make_classification
import plotly.graph_objs as go
import json
import requests
from PIL import Image


# from transformers import pipeline
from dotenv import load_dotenv
import os
from urllib.parse import urlparse
import tldextract
import string


#chatbotcode
import zipfile
import gdown
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel

# #login
# from flask import Flask
# from flask_jwt_extended import JWTManager
# from flask_login import LoginManager
# from flask_mail import Mail
# from flask_login import LoginManager
# from flask_sqlalchemy import SQLAlchemy
# from flask_mail import Mail
# from auth.models import db, User
# from auth.routes import auth
# from flask_login import login_required




#chatbotcode

# from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline

# model_name = "microsoft/deberta-v3-small"

# tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
# model = AutoModelForSequenceClassification.from_pretrained(model_name)

# bert_checker = pipeline("text-classification", model=model, tokenizer=tokenizer)

# Load environment variables from .env
load_dotenv()
#spam url import relateted
import nltk, os

# Tell NLTK to also check the local nltk_data folder
nltk.data.path.append(os.path.join(os.path.dirname(__file__), "nltk_data"))

from nltk.corpus import words

# Load the words corpus
valid_words = set(words.words())
print("engineering" in valid_words)        # ✅ Should be True
print("engineerigfnnxng" in valid_words)    # ❌ Should be False
import wordninja # Function to split  words into valid parts
import re
from urllib.parse import urlparse
from spellchecker import SpellChecker

import wordninja
# end urlspam
import google.generativeai as genai

# app.py
# import streamlit as st
# from load_file import load_file

# st.title("Download HuggingFace Repo Files in Streamlit")

# filename = st.text_input("Enter filename from repo:", "model.safetensors")

# if st.button("Download"):
#     try:
#         local_path = load_file(filename)
#         st.success(f"✅ File downloaded to: {local_path}")
#         st.write("You can now use this file in your app.")
#     except Exception as e:
#         st.error(f"❌ Error: {str(e)}")


# Set API key (no need to assign OpenAI() to client like that)
# openai.api_key = os.getenv("OPENAI_API_KEY")

# def ask_openai_scientific_validation(statement):
#     prompt = f"""Assess the scientific accuracy of: "{statement}"\nRespond with ✅ (possible) or ❌ (impossible), and explain simply."""
    
#     try:
#         client = OpenAI()  # This is correct placement
#         response = client.chat.completions.create(
#     model="gpt-3.5-turbo",
#     messages=[
#         {"role": "system", "content": "You are a scientific fact-checker."},
#         {"role": "user", "content": prompt}
#     ],
#     temperature=0.7,
#     max_tokens=150
# )

        
#         return response.choices[0].message.content.strip()
    
#     except Exception as e:
#         return f"⚠️ Could not verify:\n\n{str(e)}"


   #huggung face code start
REPO_ID = "deedrop1140/nero-ml"
MODEL_DIR = "Models"

def load_file(filename):
    """Try to load model from local folder; if missing, download from Hugging Face Hub."""
    local_path = os.path.join(MODEL_DIR, filename)

    # 1️⃣ Check if file exists locally
    if os.path.exists(local_path):
        file_path = local_path
    else:
        # 2️⃣ Download from Hugging Face (Render case)
        file_path = hf_hub_download(repo_id=REPO_ID, filename=filename)

    # 3️⃣ Load based on file extension
    if filename.endswith((".pkl", ".joblib")):
        return joblib.load(file_path)
    elif filename.endswith(".npy"):
        return np.load(file_path, allow_pickle=True)
    elif filename.endswith((".pt", ".pth")):
        return torch.load(file_path, map_location="cpu")
    else:
        return file_path

# # =====================
# # Replace your old model loads with this:
# # =====================

# # Models
# knn_model = load_file("Models/knn_model.pkl")
# lasso_model = load_file("Models/lasso_model.pkl")
# liar_model = load_file("Models/liar_model.joblib")
# linear_model = load_file("Models/linear_model.pkl")
# logistic_model = load_file("Models/logistic_model.pkl")
# nb_url_model = load_file("Models/nb_url_model.pkl")
# poly_model = load_file("Models/poly_model.pkl")
# rf_model = load_file("Models/rf_model.pkl")
# ridge_model = load_file("Models/ridge_model.pkl")
# supervised_model = load_file("Models/supervised_model.pkl")
# svr_model = load_file("Models/svr_model.pkl")
# voting_url_model = load_file("Models/voting_url_model.pkl")

# # Vectorizers / Encoders / Scalers
# label_classes = load_file("Models/label_classes.npy")
# label_encoder = load_file("Models/label_encoder.pkl")
# lasso_scaler = load_file("Models/lasso_scaler.pkl")
# liar_vectorizer = load_file("Models/liar_vectorizer.joblib")
# nb_url_vectorizer = load_file("Models/nb_url_vectorizer.pkl")
# poly_transform = load_file("Models/poly_transform.pkl")
# ridge_scaler = load_file("Models/ridge_scaler.pkl")
# svr_scaler_X = load_file("Models/svr_scaler_X.pkl")
# svr_scaler_y = load_file("Models/svr_scaler_y.pkl")
# tfidf_vectorizer = load_file("Models/tfidf_vectorizer.pkl")
# url_vectorizer = load_file("Models/url_vectorizer.pkl")
# vectorizer_joblib = load_file("Models/vectorizer.joblib")
# vectorizer_pkl = load_file("Models/vectorizer.pkl")
# # huggung face code end

MODEL_DIR = "Models"
DATA_DIR = "housedata" # Assuming your house data is here
UPLOAD_FOLDER =  'static/uploads' # NEW: Folder for temporary user uploads

app = Flask(__name__)
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
CORS(app)



#flasklogin 


# app.config["JWT_SECRET_KEY"] = "jwt-secret-key"
# jwt = JWTManager(app)



#authstart
# app.config["SECRET_KEY"] = "super-secret"
# app.config["SQLALCHEMY_DATABASE_URI"] = "sqlite:///users.db"

# Mail
# app.config["MAIL_SERVER"] = "smtp.gmail.com"
# app.config["MAIL_PORT"] = 587
# app.config["MAIL_USE_TLS"] = True
# app.config["MAIL_USERNAME"] = "[email protected]"
# app.config["MAIL_PASSWORD"] = "app_password"

# mail = Mail(app)

# login_manager = LoginManager(app)
# login_manager.login_view = "auth.login"
# db.init_app(app)
# app.register_blueprint(auth)
# jwt = JWTManager(app)
# mail = Mail(app)

# @login_manager.user_loader
# def load_user(user_id):
#     return User.query.get(int(user_id))

# with app.app_context():
#     db.create_all()
#authend


#chatbotcode
# deedrop1140/qwen-ml-tutor-assets
from transformers import (
    AutoTokenizer,
    AutoModelForCausalLM,
    StoppingCriteria,
    StoppingCriteriaList
)
from peft import PeftModel
from huggingface_hub import hf_hub_download
import zipfile
from transformers import TextIteratorStreamer
import threading
from flask import Response


# ======================
# CONFIG
# ======================
BASE_MODEL = "Qwen/Qwen2.5-1.5B"
DATASET_REPO = "deedrop1140/qwen-ml-tutor-assets"
ZIP_NAME = "qwen-ml-tutor-best-20251213T015537Z-1-001.zip"
MODEL_DIR = "qwen-ml-tutor-best"

DEVICE = "cuda" if torch.cuda.is_available() else "cpu"

# ======================
# FLASK APP
# ======================
app = Flask(__name__)

# ======================
# DOWNLOAD MODEL ASSETS
# ======================
if not os.path.exists(MODEL_DIR):
    print("⬇️ Downloading LoRA adapter...")
    zip_path = hf_hub_download(
        repo_id=DATASET_REPO,
        filename=ZIP_NAME,
        repo_type="dataset"
    )
    print("📦 Extracting adapter...")
    with zipfile.ZipFile(zip_path, "r") as z:
        z.extractall(".")
    print("✅ Adapter ready")

# ======================
# TOKENIZER (BASE MODEL)
# ======================
# ======================
# LOAD TOKENIZER (FROM LORA MODEL)
# ======================
tokenizer = AutoTokenizer.from_pretrained(
    MODEL_DIR,
    trust_remote_code=True
)

if tokenizer.pad_token_id is None:
    tokenizer.pad_token = tokenizer.eos_token

# ======================
# LOAD BASE MODEL
# ======================
base_model = AutoModelForCausalLM.from_pretrained(
    BASE_MODEL,
    torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
    trust_remote_code=True
)

# 🔥 THIS LINE IS THE FIX (DO NOT SKIP)
base_model.resize_token_embeddings(len(tokenizer))

# MOVE MODEL TO DEVICE
device = "cuda" if torch.cuda.is_available() else "cpu"
base_model = base_model.to(device)

# ======================
# LOAD LORA ADAPTER
# ======================
llm_model = PeftModel.from_pretrained(
    base_model,
    MODEL_DIR,
    is_trainable=False
)

llm_model.eval()

print("✅ Model loaded successfully")

# ======================
# STOPPING CRITERIA
# ======================
class StopOnStrings(StoppingCriteria):
    def __init__(self, tokenizer, stop_strings):
        self.tokenizer = tokenizer
        self.stop_ids = [
            tokenizer.encode(s, add_special_tokens=False)
            for s in stop_strings
        ]

    def __call__(self, input_ids, scores, **kwargs):
        for stop in self.stop_ids:
            if len(input_ids[0]) >= len(stop):
                if input_ids[0][-len(stop):].tolist() == stop:
                    return True
        return False

stop_criteria = StoppingCriteriaList([
    StopOnStrings(
        tokenizer,
        stop_strings=["User:", "Instruction:", "Question:"]
    )
])

# =============================
# ROUTES
# =============================
@app.route("/chatbot")
def chatbot():
    return render_template("chatbot.html", active_page="chatbot")

@app.route("/chat", methods=["POST"])
def chat():
    data = request.json
    user_msg = data.get("message", "").strip()

    if not user_msg:
        return jsonify({"reply": "Please ask a machine learning question."})

    prompt = f"""Instruction: Answer the following question clearly.
Do NOT ask follow-up questions.
Do NOT continue the conversation.
Question: {user_msg}
Answer:"""

    inputs = tokenizer(prompt, return_tensors="pt").to(DEVICE)

    streamer = TextIteratorStreamer(
        tokenizer,
        skip_prompt=True,
        skip_special_tokens=True
    )

    generation_kwargs = dict(
        **inputs,
        max_new_tokens=200,
        temperature=0.3,
        top_p=0.9,
        do_sample=True,
        eos_token_id=tokenizer.eos_token_id,
        pad_token_id=tokenizer.eos_token_id,
        stopping_criteria=stop_criteria,
        streamer=streamer
    )

    # Run generation in background thread
    thread = threading.Thread(
        target=llm_model.generate,
        kwargs=generation_kwargs
    )
    thread.start()

    def event_stream():
        for token in streamer:
            yield f"data: {token}\n\n"

        yield "data: [DONE]\n\n"

    return Response(
        event_stream(),
        mimetype="text/event-stream"
    )



#chatbotcode

genai.configure(api_key=os.getenv("GEMINI_API_KEY"))

def ask_gemini(statement):
    model = genai.GenerativeModel("gemini-2.0-flash-001")
    response = model.generate_content(f"Verify this statement for truth: {statement}")
    return response.text

#rfc
# model = load("Models/liar_model.joblib")
# vectorizer = load("Models/liar_vectorizer.joblib")

# Load BERT fact-checker pipeline (local model)
# bert_checker = pipeline("text-classification", model="microsoft/deberta-v3-small")

#endrfc

#svm

# ==== SVM Setup ====
X, y = make_classification(n_samples=100, n_features=2, n_redundant=0,
                           n_clusters_per_class=1, n_classes=2, random_state=42)
scaler = StandardScaler()
X = scaler.fit_transform(X)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# Train SVM
svm_model = SVC(kernel="linear")
svm_model.fit(X_train, y_train)

#endsvm
#deision tree
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY")
GEMINI_URL = "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash:generateContent"
#end deision tree

# Ensure directories exist
os.makedirs(MODEL_DIR, exist_ok=True)
os.makedirs(DATA_DIR, exist_ok=True)
os.makedirs(UPLOAD_FOLDER, exist_ok=True) # NEW: Create upload folder

def clean_text(text):
    if pd.isnull(text):
        return ""
    text = text.lower()
    text = re.sub(r"http\S+|www\S+|https\S+", '', text)
    text = text.translate(str.maketrans('', '', string.punctuation))
    text = re.sub(r'\d+', '', text)
    text = re.sub(r'\s+', ' ', text).strip()
    return text

# --- Helper functions for data generation (conceptual for demo) ---
def generate_linear_data(n_samples=100, noise=0.5):
    X = np.sort(np.random.rand(n_samples) * 10).reshape(-1, 1)
    y = 2 * X.squeeze() + 5 + noise * np.random.randn(n_samples)
    return X, y

def generate_non_linear_data(n_samples=100, noise=0.5):
    X = np.sort(np.random.rand(n_samples) * 10).reshape(-1, 1)
    y = np.sin(X.squeeze()) * 10 + noise * np.random.randn(n_samples)
    return X, y

def generate_noisy_data(n_samples=100, noise_factor=3.0):
    X = np.sort(np.random.rand(n_samples) * 10).reshape(-1, 1)
    y = 2 * X.squeeze() + 5 + noise_factor * np.random.randn(n_samples) # Increased noise
    return X, y

# Function to generate house price data (using your existing data structure for consistency)
def get_house_data():
    try:
        df = pd.read_csv(os.path.join(DATA_DIR, 'train.csv'))
        # Using a subset of features for simplicity in demo
        features = ['GrLivArea', 'OverallQual', 'GarageCars', 'TotalBsmtSF', 'YearBuilt']
        # Check if all required columns exist
        if not all(col in df.columns for col in features + ['SalePrice']):
            print("Warning: Missing one or more required columns in train.csv for house data.")
            return None, None
        X = df[features]
        y = df['SalePrice']
        return X, y
    except FileNotFoundError:
        print(f"Error: train.csv not found in {DATA_DIR}. Please ensure your data is there.")
        return None, None
    except Exception as e:
        print(f"Error loading house data: {e}")
        return None, None

# Dictionary to hold all loaded models
loaded_models = {}

# Load logistic model and vectorizer for SMS
# vectorizer = joblib.load("Models/logvectorizer.pkl")
# model = joblib.load("Models/logistic_model.pkl")
# vectorizer = load_file("Models/logvectorizer.pkl")
# model = load_file("Models/logistic_model.pkl")


# # Load models once NB+DT+SVM is trained
# try:
#     model = load_file("Models/logistic_model.pkl")
#     # vectorizer = joblib.load("Models/logvectorizer.pkl")
#     # model = joblib.load("Models/logistic_model.pkl")
#     vectorizer = load_file("Models/vectorizer.pkl")
#     print("✅ Model and vectorizer loaded into memory successfully!")
# except Exception as e:
#     vectorizer = None
#     model = None
#     print(f"❌ Error: Could not load model or vectorizer. Please check your file paths. Error: {e}")
# #END NB+DT+SVM

# === Naive Bayes URL Spam Classifier (NB_spam.html) ===
# === Load Model & Vectorizer ===



# VT_API_KEY = os.getenv("VT_API_KEY")
# nb_model = load_file("Models/nb_url_model.pkl")
# vectorizer = load_file("Models/nb_url_vectorizer.pkl")

# if nb_model is not None and vectorizer is not None:
#     print("✅ Loaded model and vectorizer.")
# else:
#     print("❌ Model or vectorizer not found.")






def load_all_models():
    """
    Loads all necessary models into the loaded_models dictionary when the app starts.
    """
    global loaded_models

    # Load Supervised Model
    # Load Supervised Model
try:
    supervised_model_path = load_file("linear_model.pkl")

    # Debug: check what load_file actually returned
    print("DEBUG -> supervised_model_path type:", type(supervised_model_path))

    # If load_file returned a path (string), load with joblib
    if isinstance(supervised_model_path, str):
        loaded_models['supervised'] = joblib.load(supervised_model_path)
    else:
        # If load_file already returned the model object
        loaded_models['supervised'] = supervised_model_path

    print("Supervised model loaded successfully")

except FileNotFoundError:
    print(f"Error: Supervised model file not found at {supervised_model_path}. "
          "Please run train_model.py first.")
    loaded_models['supervised'] = None  # Mark as not loaded
except Exception as e:
    print(f"Error loading supervised model: {e}")
    loaded_models['supervised'] = None


# Load models when Flask app context is ready
with app.app_context():
    load_all_models()

@app.route('/')
def frontpage():
    return render_template('frontpage.html')
@app.route('/home')
def home():
    return render_template('home.html')

@app.route("/about")
def about():
    return render_template("about.html", active_page="about")


@app.route("/privacy")
def privacy():
    return render_template("privacy.html", active_page="privacy")


@app.route("/contact")
def contact():
    return render_template("contact.html", active_page="contact")


@app.route('/Optimization')  
def Optimization():
    return render_template('Optimization.html', active_page='Optimization')

@app.route('/supervise')
def supervise():
    return render_template('supervise.html', active_page='supervise')


@app.route('/unsupervised')
def unsupervised():
    return render_template('unsupervised.html', active_page='unsupervised')

# Semi-Supervised Learning page
@app.route('/semi-supervised')
def semi_supervised():
    return render_template('semi_supervised.html', active_page='semi_supervised')

# Reinforcement Learning page
@app.route('/reinforcement')
def reinforcement():
    return render_template('reinforcement.html', active_page='reinforcement')

# Ensemble Learning page
@app.route('/ensemble')
def ensemble():
    return render_template('ensemble.html', active_page='ensemble')    


@app.route('/supervised', methods=['GET', 'POST'])
def supervised():
    prediction = None
    hours_studied_input = None

    if loaded_models['supervised'] is None:
        return "Error: Supervised model could not be loaded. Please check server logs.", 500

    if request.method == 'POST':
        try:
            hours_studied_input = float(request.form['hours'])
            input_data = np.array([[hours_studied_input]])

            predicted_score = loaded_models['supervised'].predict(input_data)[0]
            prediction = round(predicted_score, 2)

        except ValueError:
            print("Invalid input for hours studied.")
            prediction = "Error: Please enter a valid number."
        except Exception as e:
            print(f"An error occurred during prediction: {e}")
            prediction = "Error during prediction."

    return render_template('supervised.html', prediction=prediction, hours_studied_input=hours_studied_input)


@app.route('/polynomial', methods=['GET', 'POST'])
def polynomial():
    if request.method == 'POST':
        try:
            hours = float(request.form['hours'])

            # model = joblib.load('Models/poly_model.pkl')
            # poly = joblib.load('Models/poly_transform.pkl')
            # model = load_file("Models/poly_model.pkl")
            # poly= load_file("Models/poly_transform.pkl")
            model = load_file("poly_model.pkl")
            poly= load_file("poly_transform.pkl")

            transformed_input = poly.transform([[hours]])
            prediction = model.predict(transformed_input)[0]

            return render_template("poly.html", prediction=round(prediction, 2), hours=hours)

        except Exception as e:
            print(f"Error: {e}")
            return render_template("poly.html", error="Something went wrong.")

    return render_template("poly.html")


@app.route('/random_forest', methods=['GET', 'POST'])
def random_forest():
    if request.method == 'POST':
        try:
            hours = float(request.form['hours'])
            model  = load_file("rf_model.pkl")
            # model = joblib.load('Models/rf_model.pkl')
            prediction = model.predict([[hours]])[0]

            return render_template("rf.html", prediction=round(prediction, 2), hours=hours)
        except Exception as e:
            print(f"[ERROR] {e}")
            return render_template("rf.html", error="Prediction failed. Check your input.")
    return render_template("rf.html")

@app.route('/prediction_flow')
def prediction_flow():
    return render_template('prediction_flow.html')

@app.route("/lasso", methods=["GET", "POST"])
def lasso():
    if request.method == "POST":
        try:
            inputs = [float(request.form.get(f)) for f in ['OverallQual', 'GrLivArea', 'GarageCars', 'TotalBsmtSF', 'YearBuilt']]
            
            # model = load_file("Models/lasso_model.pkl")
            # scaler = load_file("Models/lasso_scaler.pkl")
            # model = joblib.load("Models/lasso_model.pkl")
            # scaler = joblib.load("Models/lasso_scaler.pkl")
            model = load_file("lasso_model.pkl")
            scaler = load_file("lasso_scaler.pkl")

            scaled_input = scaler.transform([inputs])

            prediction = model.predict(scaled_input)[0]
            return render_template("lasso.html", prediction=round(prediction, 2))

        except Exception as e:
            return render_template("lasso.html", error=str(e))

    return render_template("lasso.html")


@app.route('/ridge', methods=['GET', 'POST'])
def ridge():
    prediction = None
    error = None

    try:
        # model = load_file("Models/ridge_model.pkl")
        # scaler = load_file("Models/ridge_scaler.pkl")
        # model = joblib.load(os.path.join(MODEL_DIR, 'ridge_model.pkl'))
        # scaler = joblib.load(os.path.join(MODEL_DIR, 'ridge_scaler.pkl'))
        
        model = load_file("ridge_model.pkl")
        scaler = load_file("ridge_scaler.pkl")


    except Exception as e:
        return f"❌ Error loading Ridge model: {e}", 500

    if request.method == 'POST':
        try:
            features = ['OverallQual', 'GrLivArea', 'GarageCars', 'TotalBsmtSF', 'YearBuilt']
            input_data = [float(request.form[feature]) for feature in features]
            input_scaled = scaler.transform([input_data])
            prediction = model.predict(input_scaled)[0]
        except Exception as e:
            error = str(e)

    return render_template('ridge.html', prediction=prediction, error=error)

@app.route('/dtr', methods=['GET', 'POST'])
def dtr():
    if request.method == 'GET':
        return render_template('dtr.html')

    if request.method == 'POST':
        data = request.get_json()
        data_points = data.get('dataPoints') if data else None
        print("Received data:", data_points)
        return jsonify({'message': 'Data received successfully!', 'receivedData': data_points})


@app.route('/dtrg')
def drg():
    return render_template('desiciongame.html')

# --- SVR Routes ---
@app.route('/svr') # This route is for the initial GET request to load the page
def svr_page():
    return render_template('svr.html')

# @app.route('/decision-tree')
# def decision_tree():
#     return render_template('decision-Tree.html')

# @app.route('/decision-tree-game')
# def decision_tree_game():
#     return render_template('Decision-Tree-Game.html')    


@app.route('/run_svr_demo', methods=['POST'])
def run_svr_demo():
    try:
        # Check if the request contains JSON (for predefined datasets) or FormData (for file uploads)
        if request.is_json:
            data = request.json
        else:
            # For FormData, data is accessed via request.form for fields, request.files for files
            data = request.form

        dataset_type = data.get('dataset_type', 'linear')
        kernel_type = data.get('kernel', 'rbf')
        C_param = float(data.get('C', 1.0))
        gamma_param = float(data.get('gamma', 0.1))
        epsilon_param = float(data.get('epsilon', 0.1))

        X, y = None, None

        if dataset_type == 'linear':
            X, y = generate_linear_data()
        elif dataset_type == 'non_linear':
            X, y = generate_non_linear_data()
        elif dataset_type == 'noisy':
            X, y = generate_noisy_data()
        elif dataset_type == 'house_data':
            X_house, y_house = get_house_data()
            if X_house is not None and not X_house.empty:
                X = X_house[['GrLivArea']].values # Only GrLivArea for simple 1D plotting
                y = y_house.values
            else:
                X, y = generate_linear_data() # Fallback if house data is missing/invalid
        elif dataset_type == 'custom_csv': # NEW: Handle custom CSV upload
            uploaded_file = request.files.get('file')
            x_column_name = data.get('x_column_name')
            y_column_name = data.get('y_column_name')

            if not uploaded_file or uploaded_file.filename == '':
                return jsonify({'error': 'No file uploaded for custom CSV.'}), 400
            if not x_column_name or not y_column_name:
                return jsonify({'error': 'X and Y column names are required for custom CSV.'}), 400

            try:
                # Read CSV into a pandas DataFrame from in-memory BytesIO object
                df = pd.read_csv(io.BytesIO(uploaded_file.read()))

                if x_column_name not in df.columns or y_column_name not in df.columns:
                    missing_cols = []
                    if x_column_name not in df.columns: missing_cols.append(x_column_name)
                    if y_column_name not in df.columns: missing_cols.append(y_column_name)
                    return jsonify({'error': f"Missing columns in uploaded CSV: {', '.join(missing_cols)}"}), 400

                X = df[[x_column_name]].values # Ensure X is 2D for scikit-learn
                y = df[y_column_name].values
            except Exception as e:
                return jsonify({'error': f"Error reading or processing custom CSV: {str(e)}"}), 400
        else: # Fallback for unknown dataset types
            X, y = generate_linear_data()


        if X is None or y is None or len(X) == 0:
            return jsonify({'error': 'Failed to generate or load dataset.'}), 500

        # Scale data
        scaler_X = StandardScaler()
        scaler_y = StandardScaler()

        X_scaled = scaler_X.fit_transform(X)
        y_scaled = scaler_y.fit_transform(y.reshape(-1, 1)).flatten()

        X_train, X_test, y_train, y_test = train_test_split(X_scaled, y_scaled, test_size=0.2, random_state=42)

        # Train SVR model
        svr_model = SVR(kernel=kernel_type, C=C_param, gamma=gamma_param, epsilon=epsilon_param)
        svr_model.fit(X_train, y_train)

        # Make predictions
        y_pred_scaled = svr_model.predict(X_test)

        # Inverse transform predictions to original scale for metrics
        y_pred = scaler_y.inverse_transform(y_pred_scaled.reshape(-1, 1)).flatten()
        y_test_original = scaler_y.inverse_transform(y_test.reshape(-1, 1)).flatten()

        # Calculate metrics
        mse = mean_squared_error(y_test_original, y_pred)
        r2 = r2_score(y_test_original, y_pred)
        support_vectors_count = len(svr_model.support_vectors_)

        # Prepare data for plotting
        plot_X_original = scaler_X.inverse_transform(X_scaled)
        plot_y_original = scaler_y.inverse_transform(y_scaled.reshape(-1, 1)).flatten()

        x_plot = np.linspace(plot_X_original.min(), plot_X_original.max(), 500).reshape(-1, 1)
        x_plot_scaled = scaler_X.transform(x_plot)
        y_plot_scaled = svr_model.predict(x_plot_scaled)
        y_plot_original = scaler_y.inverse_transform(y_plot_scaled.reshape(-1, 1)).flatten()

        y_upper_scaled = y_plot_scaled + epsilon_param
        y_lower_scaled = y_plot_scaled - epsilon_param
        y_upper_original = scaler_y.inverse_transform(y_upper_scaled.reshape(-1, 1)).flatten()
        y_lower_original = scaler_y.inverse_transform(y_lower_scaled.reshape(-1, 1)).flatten()

        plot_data = {
            'data': [
                {
                    'x': plot_X_original.flatten().tolist(),
                    'y': plot_y_original.tolist(),
                    'mode': 'markers',
                    'type': 'scatter',
                    'name': 'Original Data'
                },
                {
                    'x': x_plot.flatten().tolist(),
                    'y': y_plot_original.tolist(),
                    'mode': 'lines',
                    'type': 'scatter',
                    'name': 'SVR Prediction',
                    'line': {'color': 'red'}
                },
                {
                    'x': x_plot.flatten().tolist(),
                    'y': y_upper_original.tolist(),
                    'mode': 'lines',
                    'type': 'scatter',
                    'name': 'Epsilon Tube (Upper)',
                    'line': {'dash': 'dash', 'color': 'green'},
                    'fill': 'tonexty',
                    'fillcolor': 'rgba(0,128,0,0.1)'
                },
                {
                    'x': x_plot.flatten().tolist(),
                    'y': y_lower_original.tolist(),
                    'mode': 'lines',
                    'type': 'scatter',
                    'name': 'Epsilon Tube (Lower)',
                    'line': {'dash': 'dash', 'color': 'green'}
                }
            ],
            'layout': {
                'title': f'SVR Regression (Kernel: {kernel_type.upper()})',
                'xaxis': {'title': 'Feature Value'},
                'yaxis': {'title': 'Target Value'},
                'hovermode': 'closest'
            }
        }

        return jsonify({
            'mse': mse,
            'r2_score': r2,
            'support_vectors_count': support_vectors_count,
            'plot_data': plot_data
        })

    except Exception as e:
        print(f"Error in SVR demo: {e}")
        return jsonify({'error': str(e)}), 500
    
    
def clean_text(text):
    return text.lower().strip()

    # Gradient-desent route
@app.route('/gradient-descent')    
def gradient_descent():
    return render_template('Gradient-Descen.html')
#new

@app.route('/gradient-descent-three')
def gradient_descent_three():
    return render_template('gradient-descent-three.html')
     

#  Gradient-boosting route
@app.route('/gradient-boosting')
def gradient_boosting():
    return render_template('Gradient-Boosting.html')
#new
@app.route('/gradient-boosting-three')
def gradient_boosting_three():
    return render_template('gradient-boosting-three.html')



# Gradient-xgboost route
@app.route('/xgboost-regression')
def xgboost_regression():
    return render_template('XGBoost-Regression.html')

@app.route('/xgboost-tree-three')
def xgboost_regression_three():
    return render_template('xboost-tree-three.html')

@app.route('/xgboost-graph-three2')
def xgboost_regression_three2():
    return render_template('xbost-graph-three.html')



#Gradient-lightgbm route
@app.route('/lightgbm')
def lightgbm():
    return render_template('LightGBM-Regression.html')


@app.route('/Naive-Bayes-Simulator')
def Naive_Bayes_Simulator():
    return render_template('Naive-Bayes-Simulator.html')

@app.route('/svm-model-three')
def svm_model_three():
    return render_template('SVM_Simulator_3D.html')



#nerual network route for calssifcation 
@app.route('/neural-network-classification')
def neural_network_classification():
    return render_template('Neural-Networks-for-Classification.html')

@app.route('/Neural-Networks-for-Classification-three')
def Neural_Networks_for_Classification_three():
   return render_template('Neural-Networks-for-Classification-three.html')



#hierarchical clustering route

@app.route('/hierarchical-clustering')
def hierarchical_clustering():
    return render_template('Hierarchical-Clustering.html')

@app.route('/hierarchical-three')
def hierarchical_three():
    return render_template('Hierarchical-three.html')


#Gaussian-mixture-models route
@app.route('/gaussian-mixture-models')  
def gaussian_mixture_models():
    return render_template('Gaussian-Mixture-Models.html')

@app.route('/gaussian-mixture-three')  
def gaussian_mixture_three():
    return render_template('gmm-threejs.html')




#Principal-Component-Analysis
@app.route('/pca')
def pca():
    return render_template('Principal-Component-Analysis.html')

@app.route('/pca-three')
def pca_three():
    return render_template('pca-threejs.html')



#t-sne
@app.route('/t-sne')
def tsne():
    return render_template('t-SNE.html')

@app.route('/t-sne-three')
def tsne_three():
    return render_template('t-sne-three.html')


# liner-discriminant-analysis
@app.route('/lda')
def lda():
    return render_template('Linear-Discriminant-Analysis.html')


@app.route('/lda-three')
def lda_three():
    return render_template('lda-three.html')


# Independent-Component-Analysis
@app.route('/ica')
def ica():
    return render_template('Independent-Component-Analysis.html')



@app.route('/ica-three')
def ica_three():
    return render_template('ica-threejs.html')


#Apriori
@app.route('/apriori')
def apriori():
    return render_template('Apriori-Algorithm.html')

@app.route('/apriori-three')
def apriori_three():
    return render_template('Apriori-Simulator-three.html')


# Eclat Algorithm
@app.route('/eclat')
def eclat():
    return render_template('Eclat-Algorithm.html')

@app.route('/eclat-three')
def eclat_three():
    return render_template('Eclat-Algorithm-three.html')

#genrative models
@app.route('/generative-models')
def generative_models():
    return render_template('Generative-Models.html')

#self training
@app.route('/self-training')
def self_training():
    return render_template('Self-Training.html')


# TRANSDUCTIVE SVM
@app.route('/transductive-svm')
def transductive_svm():
    return render_template('Transductive-SVM.html')


#Graph-Based Methods
@app.route('/graph-based-methods')
def graph_based_methods():
    return render_template('Graph-Based-Method.html')

#Agent-Environment-State
@app.route('/agent-environment-state')
def agent_environment_state():
    return render_template('Agent-Environment-State.html')

#Action and Policy
@app.route('/action-and-policy')
def action_and_policy():
    return render_template('Action-and-Policy.html')

#Reward-ValueFunction
@app.route('/reward-valuefunction')
def reward_valuefunction():
    return render_template('Reward-ValueFunction.html')

#Q-Learning
@app.route('/q-learning')
def q_learning():
    return render_template('Q-Learning.html') 

#Deep Reinforcement Learning
@app.route('/deep-reinforcement-learning')   
def deep_reinforcement_learning():
    return render_template('Deep-Reinforcement-Learning.html')


#Bagging
@app.route('/bagging')
def bagging():
    return render_template('Bagging.html')

#Boosting
@app.route('/boosting')
def boosting():
    return render_template('Boosting.html')

# stacking
@app.route('/stacking')
def stacking():
    return render_template('Stacking.html')

# voting
@app.route('/voting')
def voting():
    return render_template('Voting.html')    
   
import re

# Load saved model and vectorizer
# model = joblib.load("Models/logistic_model.pkl")
# vectorizer = joblib.load("Models/logvectorizer.pkl")


# Text cleaning
def clean_text(text):
    text = text.lower()
    text = re.sub(r'\W', ' ', text)
    text = re.sub(r'\s+[a-zA-Z]\s+', ' ', text)
    text = re.sub(r'\s+', ' ', text)
    return text.strip()

@app.route('/logistic', methods=['GET', 'POST'])
def logistic():
    prediction, confidence_percentage, cleaned, tokens, probability = None, None, None, None, None


    # model  = load_file("Models/logistic_model.pkl")
    # vectorizer  = load_file("Models/logvectorizer.pkl")
    model = load_file("logistic_model.pkl")
    vectorizer = load_file("logvectorizer.pkl")

    if request.method == "POST":
        msg = request.form.get('message', '')
        cleaned = clean_text(msg)
        tokens = cleaned.split()


        try:
            vector = vectorizer.transform([cleaned])
            probability = model.predict_proba(vector)[0][1]
            prediction = "Spam" if probability >= 0.5 else "Not Spam"
            confidence_percentage = round(probability * 100, 2)
        except Exception as e:
            print("Error predicting:", e)
            prediction = "Error"
            confidence_percentage = 0

    return render_template(
        "logistic.html",
        prediction=prediction,
        confidence_percentage=confidence_percentage,
        cleaned=cleaned,
        tokens=tokens,
        probability=round(probability, 4) if probability else None,
        source="sms"
    )

@app.route('/logistic-sms', methods=['POST'])
def logistic_sms():
    try:
        data = request.get_json()
        msg = data.get('message', '')
        cleaned = clean_text(msg)
        tokens = cleaned.split()

        vector = vectorizer.transform([cleaned])
        probability = model.predict_proba(vector)[0][1]
        prediction = "Spam" if probability >= 0.5 else "Not Spam"
        confidence_percentage = round(probability * 100, 2)

        return jsonify({
            "prediction": prediction,
            "confidence": confidence_percentage,
            "probability": round(probability, 4),
            "cleaned": cleaned,
            "tokens": tokens,
            "source": "json"
        })

    except Exception as e:
        print("Error in /logistic-sms:", e)
        return jsonify({"error": "Internal server error", "details": str(e)}), 500



# @app.route("/logistic", methods=["GET", "POST"])
# def logistic():
#     prediction = None
#     error = None
#     if request.method == "POST":
#         try:
#             input_text = request.form.get("message")

#             # Load the vectorizer and logistic model from Models folder
#             vectorizer = joblib.load("Models/vectorizer.pkl")
#             model = joblib.load("Models/logistic_model.pkl")

#             # Transform input and make prediction
#             input_vector = vectorizer.transform([input_text])
#             result = model.predict(input_vector)[0]

#             prediction = "✅ Not Spam" if result == 0 else "🚨 Spam"
#         except Exception as e:
#             error = str(e)

#     return render_template("logistic.html", prediction=prediction, error=error)

  




 #---------- LOAD MODEL & LABELS ONCE (startup) ----------
MODEL_PATH = os.path.join("Models", "knnmodel.joblib")     # adjust if your filename is different
LABELS_PATH = os.path.join("Models", "label_classes.npy")

try:
    model = joblib.load(MODEL_PATH)
except Exception as e:
    # Keep model as None so routes can return clear error if it's missing
    current_app.logger if hasattr(current_app, "logger") else print
    print(f"Failed to load model from {MODEL_PATH}: {e}")
    model = None

try:
    label_classes = np.load(LABELS_PATH, allow_pickle=True)
except Exception as e:
    print(f"Failed to load label_classes from {LABELS_PATH}: {e}")
    label_classes = None

# ---------- KNN VISUAL ROUTES (unchanged) ----------
@app.route("/knn")
def knn_visual():
    return render_template("knn.html")

@app.route('/knn_visual_predict', methods=['POST'])
def knn_visual_predict():
    data = request.get_json()
    points = np.array(data['points'])      # shape: (N, 3)
    test_point = np.array(data['test_point'])  # shape: (2,)
    k = int(data['k'])

    X = points[:, :2]
    y = points[:, 2].astype(int)

    knn_local = KNeighborsClassifier(n_neighbors=k)
    knn_local.fit(X, y)
    pred = knn_local.predict([test_point])[0]

    dists = np.linalg.norm(X - test_point, axis=1)
    neighbor_indices = np.argsort(dists)[:k]
    neighbors = X[neighbor_indices]

    return jsonify({
        'prediction': int(pred),
        'neighbors': neighbors.tolist()
    })

# ---------- IMAGE PREDICTION ROUTE (fixed) ----------
@app.route("/knn_image")
def knn_image_page():
    return render_template("knn_image.html")

@app.route("/predict_image", methods=["POST"])
def predict_image():
    if "image" not in request.files:
        return jsonify({"error": "No image uploaded"}), 400

    file = request.files["image"]

    try:
        # Convert to grayscale exactly like MNIST
        image = Image.open(file.stream).convert("L")
        image = image.resize((28, 28))  # MNIST size
        img_array = np.array(image).reshape(1, -1).astype("float32")  # 784 features
    except Exception as e:
        return jsonify({"error": f"Invalid image. {str(e)}"}), 400

    # Load model & labels
    model = joblib.load("Models/knnmodel.joblib")
    label_classes = np.load("Models/label_classes.npy", allow_pickle=True)

    # Predict class
    probs = model.predict_proba(img_array)[0]
    pred_index = np.argmax(probs)
    pred_label = label_classes[pred_index]
    confidence = round(float(probs[pred_index]) * 100, 2)

    return jsonify({
        "prediction": str(pred_label),
        "confidence": f"{confidence}%",
        "all_probabilities": {
            str(label_classes[i]): round(float(probs[i]) * 100, 2)
            for i in range(len(probs))
        }
    })

    
@app.route("/rfc")
def random_forest_page():
    return render_template("Random_Forest_Classifier.html")  # Your beautiful HTML goes in rfc.html

@app.route('/rf_visual_predict', methods=['POST'])
def rf_visual_predict():
    try:
        data = request.get_json()
        print("📦 Incoming JSON data:", data)

        labeled_points = data.get('points')
        test_point = data.get('test_point')

        if not labeled_points or not test_point:
            return jsonify({"error": "Missing points or test_point"}), 400

        df = pd.DataFrame(labeled_points, columns=['X1', 'X2', 'Class'])
        X = df[['X1', 'X2']]
        y = df['Class']

        rf_model = RandomForestClassifier(n_estimators=100, max_depth=5, random_state=42)
        rf_model.fit(X, y)

        test_point_np = np.array(test_point).reshape(1, -1)
        prediction = int(rf_model.predict(test_point_np)[0])

        x_min, x_max = X['X1'].min() - 1, X['X1'].max() + 1
        y_min, y_max = X['X2'].min() - 1, X['X2'].max() + 1
        xx, yy = np.meshgrid(np.linspace(x_min, x_max, 100),
                             np.linspace(y_min, y_max, 100))

        Z = rf_model.predict(np.c_[xx.ravel(), yy.ravel()])
        Z = Z.reshape(xx.shape)

        return jsonify({
            'prediction': prediction,
            'decision_boundary_z': Z.tolist(),
            'decision_boundary_x_coords': xx[0, :].tolist(),
            'decision_boundary_y_coords': yy[:, 0].tolist()
        })

    except Exception as e:
        import traceback
        print("❌ Exception in /rf_visual_predict:")
        traceback.print_exc()  # Print full error stack trace
        return jsonify({"error": str(e)}), 500

@app.route("/liar")
def liar_input_page():
    return render_template("rfc_liar_predict.html")







@app.route("/ref/liar/predictor", methods=["POST"])
def liar_predictor():
    try:
        data = request.get_json()
        statement = data.get("statement", "")

        if not statement:
            return jsonify({"success": False, "error": "Missing statement"}), 400

        try:
            # 🔍 LIAR Model Prediction
            features = vectorizer.transform([statement])
            prediction = model.predict(features)[0]

            liar_label_map = {
                0: "It can be false 🔥",
                1: "False ❌",
                2: "Mostly false but can be true 🤏",
                3: "Half True 🌓",
                4: "Mostly True 👍",
                5: "True ✅"
            }

            prediction_label = liar_label_map.get(int(prediction), "Unknown")

        except ValueError as ve:
            if "features" in str(ve):
                # Fallback to Gemini API
                prediction_label = ask_gemini(statement)
            else:
                raise ve

        # 🧠 BERT-Based Scientific Check
        bert_result = bert_checker(statement)[0]
        bert_label = bert_result["label"]
        bert_score = round(bert_result["score"] * 100, 2)

        science_label_map = {
            "LABEL_0": "✅ Scientifically Possible",
            "LABEL_1": "❌ Scientifically Impossible"
        }

        scientific_check = f"{science_label_map.get(bert_label, bert_label)} ({bert_score:.2f}%)"

        return jsonify({
            "success": True,
            "prediction": prediction_label,
            "reason": "Predicted from linguistic and content-based patterns, or Gemini fallback.",
            "scientific_check": scientific_check
        })

    except Exception as e:
        traceback.print_exc()
        return jsonify({"success": False, "error": str(e)}), 500
    


#svm
@app.route("/svm")
def svm_page():
    return render_template("svm.html")

@app.route('/svm_visual_predict', methods=['POST'])
def svm_visual_predict():
    data = request.json
    labeled_points = data['points']
    test_point = data['test_point']
    svm_type = data['svm_type']
    c_param = float(data['c_param'])
    gamma_param = float(data['gamma_param']) # Will be ignored for linear kernel

    df = pd.DataFrame(labeled_points, columns=['X1', 'X2', 'Class'])
    X = df[['X1', 'X2']]
    y = df['Class']

    # 1. Train the SVM Classifier
    if svm_type == 'linear':
        svm_model = svm.SVC(kernel='linear', C=c_param, random_state=42)
    elif svm_type == 'rbf':
        svm_model = svm.SVC(kernel='rbf', C=c_param, gamma=gamma_param, random_state=42)
    else:
        return jsonify({'error': 'Invalid SVM type'}), 400

    svm_model.fit(X, y)

    # 2. Predict for the test point
    test_point_np = np.array(test_point).reshape(1, -1)
    prediction = int(svm_model.predict(test_point_np)[0])

    # 3. Get Support Vectors
    # support_vectors_ refers to indices of support vectors
    # svc_model.support_vectors_ gives the actual support vectors
    support_vectors = svm_model.support_vectors_.tolist()

    # 4. Generate data for the decision boundary
    # Create a meshgrid of points to predict across the entire plot area
    x_min, x_max = X['X1'].min() - 1, X['X1'].max() + 1
    y_min, y_max = X['X2'].min() - 1, X['X2'].max() + 1

    # Extend range slightly to ensure test point is within boundary if it's an outlier
    x_min = min(x_min, test_point_np[0,0] - 1)
    x_max = max(x_max, test_point_np[0,0] + 1)
    y_min = min(y_min, test_point_np[0,1] - 1)
    y_max = max(y_max, test_point_np[0,1] + 1)

    xx, yy = np.meshgrid(np.linspace(x_min, x_max, 100),
                         np.linspace(y_min, y_max, 100))

    # Predict class for each point in the meshgrid
    Z = svm_model.predict(np.c_[xx.ravel(), yy.ravel()])
    Z = Z.reshape(xx.shape)

    # Convert numpy arrays to lists for JSON serialization
    decision_boundary_z = Z.tolist()
    decision_boundary_x_coords = xx[0, :].tolist()
    decision_boundary_y_coords = yy[:, 0].tolist()

    return jsonify({
        'prediction': prediction,
        'decision_boundary_z': decision_boundary_z,
        'decision_boundary_x_coords': decision_boundary_x_coords,
        'decision_boundary_y_coords': decision_boundary_y_coords,
        'support_vectors': support_vectors
    })







@app.route('/api/explain', methods=['POST'])
def explain():
    # In a real deployed environment, you'd secure your API key.
    # For Canvas, it's automatically injected if GEMINI_API_KEY is empty string.
    # If running locally and not in Canvas, set GEMINI_API_KEY in your environment variables.
    if not GEMINI_API_KEY and not os.getenv("FLASK_ENV") == "development": # Allow empty key in dev for local testing
        return jsonify({'error': 'Missing API key'}), 500

    payload = request.get_json()

    try:
        response = requests.post(
            f"{GEMINI_URL}?key={GEMINI_API_KEY}",
            headers={"Content-Type": "application/json"},
            json=payload
        )
        response.raise_for_status() # Raise HTTPError for bad responses (4xx or 5xx)
        return jsonify(response.json())
    except requests.exceptions.RequestException as e:
        app.logger.error(f"Error calling Gemini API: {e}") # Log the error on the server side
        return jsonify({'error': str(e)}), 500
    
@app.route('/decision_tree')
def decision_tree_page():
    # This route serves your Decision Tree visualization page
    # Ensure the HTML file name matches (e.g., 'decision_tree_viz.html' or 'decision_tree.html')
    return render_template('decision_tree.html') # Check your actual HTML file name here


@app.route('/game')
def decision_tree_game():
    """Renders the interactive game page for decision trees."""
    return render_template('decision_tree_game.html')

@app.route('/dt_visual_predict', methods=['POST'])
def dt_visual_predict():
    try:
        data = request.json
        labeled_points = data['points']
        test_point = data['test_point']
        max_depth = int(data['max_depth'])

        # Convert labeled_points to a pandas DataFrame
        df = pd.DataFrame(labeled_points, columns=['X1', 'X2', 'Class'])
        X = df[['X1', 'X2']]
        y = df['Class']

        # Check if there's enough data to train
        if X.empty or len(X) < 2:
            return jsonify({'error': 'Not enough data points to train the model.'}), 400

        # 1. Train the Decision Tree Classifier (This is the "model" part)
        dt_model = DecisionTreeClassifier(max_depth=max_depth, random_state=42)
        dt_model.fit(X, y)

        # 2. Predict for the test point
        test_point_np = np.array(test_point).reshape(1, -1)
        prediction = int(dt_model.predict(test_point_np)[0])

        # 3. Generate data for the decision boundary
        x_min, x_max = X['X1'].min(), X['X1'].max()
        y_min, y_max = X['X2'].min(), X['X2'].max()

        # Add a buffer to the plot range to make sure points are not on the edge
        # And handle cases where min == max (e.g., all points have same X1 value)
        x_buffer = 1.0 if (x_max - x_min) == 0 else (x_max - x_min) * 0.1
        y_buffer = 1.0 if (y_max - y_min) == 0 else (y_max - y_min) * 0.1

        x_min -= x_buffer
        x_max += x_buffer
        y_min -= y_buffer
        y_max += y_buffer

        # Ensure test point is also comfortably within the range
        x_min = min(x_min, test_point_np[0,0] - 0.5)
        x_max = max(x_max, test_point_np[0,0] + 0.5)
        y_min = min(y_min, test_point_np[0,1] - 0.5)
        y_max = max(y_max, test_point_np[0,1] + 0.5)

        # Create a meshgrid for plotting the decision boundary
        xx, yy = np.meshgrid(np.linspace(x_min, x_max, 100),
                             np.linspace(y_min, y_max, 100))

        # Predict class for each point in the meshgrid using the trained model
        Z = dt_model.predict(np.c_[xx.ravel(), yy.ravel()])
        Z = Z.reshape(xx.shape)

        # Convert numpy arrays to lists for JSON serialization
        decision_boundary_z = Z.tolist()
        decision_boundary_x_coords = xx[0, :].tolist()
        decision_boundary_y_coords = yy[:, 0].tolist()

        return jsonify({
            'prediction': prediction,
            'decision_boundary_z': decision_boundary_z,
            'decision_boundary_x_coords': decision_boundary_x_coords,
            'decision_boundary_y_coords': decision_boundary_y_coords
        })
    except Exception as e:
        # This will print the actual error to your terminal
        print(f"An error occurred in /dt_visual_predict: {e}")
        # Return a more informative error message to the frontend
        return jsonify({'error': f'Backend Error: {str(e)}. Check server console for details.'}), 500
    
    # --- Naive Bayes Routes ---
    
from urllib.parse import urlparse
from sklearn.naive_bayes import GaussianNB
from nltk.corpus import words

nb_model = load_file("nb_url_model.pkl")
vectorizer = load_file("nb_url_vectorizer.pkl")

# if nb_model is not None and vectorizer is not None:
#     print("✅ Loaded Naive Bayes URL model")
# else:
#     nb_model, vectorizer = None, None
#     print("❌ vectorizer not found")

 

@app.route('/nb_spam')
def nb_spam_page():
    return render_template('NB_spam.html')


import re
from urllib.parse import urlparse
from spellchecker import SpellChecker
import wordninja



# ---- Whitelist (your full one, unchanged) ----
whitelist = set([
    # Search Engines
    'google', 'bing', 'yahoo', 'duckduckgo', 'baidu', 'ask',

    # Social Media
    'facebook', 'instagram', 'twitter', 'linkedin', 'snapchat', 'tiktok',
    'threads', 'pinterest', 'reddit', 'quora',

    # Communication Tools
    'whatsapp', 'telegram', 'skype', 'zoom', 'meet', 'discord',
    'teams', 'signal', 'messenger',

    # Global E-commerce
    'amazon', 'ebay', 'shopify', 'alibaba', 'walmart', 'target',
    'etsy', 'shein', 'bestbuy', 'costco', 'newegg',

    # Indian E-commerce / Services
    'flipkart', 'myntra', 'ajio', 'nykaa', 'meesho', 'snapdeal',
    'paytm', 'phonepe', 'mobikwik', 'zomato', 'swiggy', 'ola', 'uber', 'bookmyshow',
    'ixigo', 'makemytrip', 'yatra', 'redbus', 'bigbasket', 'grofers', 'blinkit',
    'universalcollegeofengineering',

    # Education / Productivity
    'youtube', 'docs', 'drive', 'calendar', 'photos', 'gmail', 'notion',
    'edx', 'coursera', 'udemy', 'khanacademy', 'byjus', 'unacademy',

    # News / Media / Tech
    'bbc', 'cnn', 'nyt', 'forbes', 'bloomberg', 'reuters',
    'ndtv', 'indiatimes', 'thehindu', 'hindustantimes', 'indiatoday',
    'techcrunch', 'verge', 'wired',

    # Streaming / Entertainment
    'netflix', 'hotstar', 'primevideo', 'spotify', 'gaana', 'wynk', 'saavn', 'voot',

    # Dev & Tools
    'github', 'stackoverflow', 'medium', 'gitlab', 'bitbucket',
    'adobe', 'figma', 'canva',

    # Financial / Banking
    'hdfcbank', 'icicibank', 'sbi', 'axisbank', 'kotak', 'boi', 'upi',
    'visa', 'mastercard', 'paypal', 'stripe', 'razorpay', 'phonepe', 'paytm',

    # Government / Utilities
    'gov', 'nic', 'irctc', 'uidai', 'mygov', 'incometax', 'aadhar', 'rbi',

    # Others Common
    'airtel', 'jio', 'bsnl', 'vi', 'speedtest', 'cricbuzz', 'espn', 'espncricinfo',
    'wikipedia', 'mozilla', 'opera', 'chrome', 'android', 'apple', 'windows', 'microsoft'
])

    # ... your full whitelist from before ...


# ---- Trusted & Bad TLDs ----
trusted_tlds = [
    '.gov', '.nic.in', '.edu', '.ac.in', '.mil', '.org', '.int',
    '.co.in', '.gov.in', '.res.in', '.net.in', '.nic.gov.in'
]

# Expanded Bad TLDs (Rule 4)
bad_tlds = [
    '.xyz', '.tk', '.ml', '.ga', '.cf', '.top', '.gq', '.cn',
    '.ru', '.pw', '.bid', '.link', '.loan', '.party', '.science',
    '.stream', '.webcam', '.online', '.site', '.website', '.space',
    '.club', '.buzz', '.info'
]

# Suspicious extensions (Rule 13)
suspicious_extensions = ['.exe', '.zip', '.rar', '.js', '.php', '.asp', '.aspx', '.jsp', '.sh']

# Phishing keywords (Rule 11, your full list)
phishing_keywords = [
    'login', 'verify', 'secure', 'account', 'update', 'confirm', 'authenticate',
    'free', 'bonus', 'offer', 'prize', 'winner', 'gift', 'coupon', 'discount',
    'bank', 'paypal', 'creditcard', 'mastercard', 'visa', 'amex', 'westernunion',
    'signin', 'click', 'password', 'unlock', 'recover', 'validate', 'urgency',
    'limitedtime', 'expires', 'suspicious', 'alert', 'important', 'actionrequired'
]

# ---- Rules 5–14 ----
rules = {
    5: r"https?://\d{1,3}(\.\d{1,3}){3}",
    6: r"@[A-Za-z0-9.-]+\.[A-Za-z]{2,}",
    7: r"(free money|win now|click here)",
    8: r"https?://[^\s]*\.(ru|cn|tk)",
    9: r"https?://.{0,6}\..{2,6}/.{0,6}",
    10: r"[0-9]{10,}",
    12: r"https?://[^\s]*@[^\s]+",
    13: r"https?://[^\s]*//[^\s]+",
    14: r"https?://[^\s]*\?(?:[^=]+=[^&]*&){5,}",
}


# ---- Gibberish Check Helper (Rule 15) ----
def is_gibberish_word(word):
    vowels = "aeiou"
    v_count = sum(c in vowels for c in word)
    return v_count / len(word) < 0.25

# # ---- Utility: Extract words from URL ----
# def extract_words(url):
#     parsed = urlparse(url if url.startswith(("http://", "https://")) else "http://" + url)
#     raw = parsed.netloc.replace('-', '') + parsed.path.replace('-', '')
#     # Split using wordninja
#     words = wordninja.split(raw.lower())
#     # Keep only alphabetic words of length >= 3
#     words = [w for w in words if w.isalpha() and len(w) >= 3]
#     return words
# ---- Extract words from URL ----
def extract_words(url):
    parsed = urlparse(url if url.startswith(("http://", "https://")) else "http://" + url)
    parts = re.split(r'\W+', parsed.netloc + parsed.path)
    final_words = []
    for word in parts:
        if len(word) > 2 and word.isalpha():
            split_words = wordninja.split(word.lower())
            if len(split_words) <= 1:
                split_words = [word.lower()]
            final_words.extend(split_words)
    return final_words


# --- Your original predict function, now inside the Flask app ---
@app.route("/predict", methods=["POST"])
def predict():
    try:
        data = request.get_json()
        url = data.get("url", "").lower()
        if not url:
            return jsonify({'error': 'No URL provided'}), 400

        parsed = urlparse(url if url.startswith(("http://", "https://")) else "http://" + url)
        path = parsed.path

        # ---- SpellChecker using built-in dictionary ----
        spell = SpellChecker(distance=1)

        # ---- Extract words and check spelling ----
        words = extract_words(url)
        # ignore known TLDs
        tlds_to_ignore = [tld.replace('.', '',"/") for tld in trusted_tlds + bad_tlds]
        words_for_spellcheck = [w for w in words if w not in tlds_to_ignore]

        misspelled = spell.unknown(words_for_spellcheck)
        steps = [{"word": w, "valid": (w not in misspelled) or (w in tlds_to_ignore)} for w in words]

        if misspelled:
            return jsonify({
                "prediction": 1,
                "reason": f"🧾 Spelling errors: {', '.join(misspelled)}",
                "steps": steps
            })
        else:
            return jsonify({
                "prediction": 0,
                "reason": "✅ No spelling issues",
                "steps": steps
            })

    except Exception as e:
        return jsonify({'error': f"An issue occurred during spell checking: {str(e)}"}), 500



    
@app.route('/naive_bayes')
def naive_bayes_page():
    return render_template('naive_bayes_viz.html')

    # --- New Naive Bayes Prediction Route ---
@app.route('/nb_visual_predict', methods=['POST'])
def nb_visual_predict():
    try:
        data = request.json
        labeled_points = data['points']
        test_point = data['test_point']

        df = pd.DataFrame(labeled_points, columns=['X1', 'X2', 'Class'])
        X = df[['X1', 'X2']]
        y = df['Class']

        # Ensure enough data and at least two classes for classification
        if X.empty or len(X) < 2:
            return jsonify({'error': 'Not enough data points to train the model.'}), 400
        if len(y.unique()) < 2:
            return jsonify({'error': 'Need at least two different classes to classify.'}), 400

        # Train Gaussian Naive Bayes Model
        # GaussianNB is suitable for continuous data
        nb_model = GaussianNB()
        nb_model.fit(X, y)

        # Predict for the test point
        test_point_np = np.array(test_point).reshape(1, -1)
        prediction = int(nb_model.predict(test_point_np)[0])

        # Generate data for the decision boundary
        x_min, x_max = X['X1'].min(), X['X1'].max()
        y_min, y_max = X['X2'].min(), X['X2'].max()

        x_buffer = 1.0 if x_max - x_min == 0 else (x_max - x_min) * 0.1
        y_buffer = 1.0 if y_max - y_min == 0 else (y_max - y_min) * 0.1

        x_min -= x_buffer
        x_max += x_buffer
        y_min -= y_buffer
        y_max += y_buffer

        x_min = min(x_min, test_point_np[0,0] - 0.5)
        x_max = max(x_max, test_point_np[0,0] + 0.5)
        y_min = min(y_min, test_point_np[0,1] - 0.5)
        y_max = max(y_max, test_point_np[0,1] + 0.5)
        
        xx, yy = np.meshgrid(np.linspace(x_min, x_max, 100),
                             np.linspace(y_min, y_max, 100))
        
        if xx.size == 0 or yy.size == 0:
            return jsonify({'error': 'Meshgrid could not be created. Data range too narrow.'}), 400

        # Predict class for each point in the meshgrid
        # Use predict_proba and then argmax to get class for decision boundary coloring
        Z = nb_model.predict(np.c_[xx.ravel(), yy.ravel()])
        Z = Z.reshape(xx.shape)

        decision_boundary_z = Z.tolist()
        decision_boundary_x_coords = xx[0, :].tolist()
        decision_boundary_y_coords = yy[:, 0].tolist()

        return jsonify({
            'prediction': prediction,
            'decision_boundary_z': decision_boundary_z,
            'decision_boundary_x_coords': decision_boundary_x_coords,
            'decision_boundary_y_coords': decision_boundary_y_coords
        })
    except Exception as e:
        print(f"An error occurred in /nb_visual_predict: {e}")
        return jsonify({'error': f'Backend Error: {str(e)}. Check server console for details.'}), 500
    
def check_with_virustotal(url):
    try:
        headers = {"x-apikey": VT_API_KEY}
        submit_url = "https://www.virustotal.com/api/v3/urls"

        # Submit the URL for scanning
        response = requests.post(submit_url, headers=headers, data={"url": url})
        url_id = response.json()["data"]["id"]

        # Fetch result
        result = requests.get(f"{submit_url}/{url_id}", headers=headers)
        data = result.json()

        stats = data["data"]["attributes"]["last_analysis_stats"]
        malicious_count = stats.get("malicious", 0)

        if malicious_count > 0:
            return True, f"☣️ VirusTotal flagged it as malicious ({malicious_count} engines)"
        return False, None
    except Exception as e:
        print(f"⚠️ VirusTotal error: {e}")



        return False, None
    









@app.route('/kmeans-clustering')
def clustering():
    return render_template('clustering.html')

#image code
@app.route('/kmeans-Dbscan-image', methods=['GET', 'POST'])
def compress_and_clean():
    final_image = None

    if request.method == 'POST':
        try:
            # Get form values
            mode = request.form.get('mode', 'compress')
            k = int(request.form.get('k', 8))
            eps = float(request.form.get('eps', 0.6))
            min_samples = int(request.form.get('min_samples', 50))
            image_file = request.files.get('image')

            if image_file and image_file.filename != '':
                # Load image
                img = Image.open(image_file).convert('RGB')
                max_size = (518, 518)
                img.thumbnail(max_size, Image.Resampling.LANCZOS)

                img_np = np.array(img)
                h, w, d = img_np.shape
                pixels = img_np.reshape(-1, d)

                # Apply KMeans
                kmeans = KMeans(n_clusters=k, random_state=42, n_init=10)
                kmeans.fit(pixels)
                clustered_pixels = kmeans.cluster_centers_[kmeans.labels_].astype(np.uint8)

                # Mode 1: Just Compress
                if mode == 'compress':
                    final_pixels = clustered_pixels.reshape(h, w, d)

                # Mode 2: Compress + Clean (KMeans + DBSCAN)
                else:
                    # Sample to avoid MemoryError
                    max_dbscan_pixels = 10000
                    if len(clustered_pixels) > max_dbscan_pixels:
                        idx = np.random.choice(len(clustered_pixels), max_dbscan_pixels, replace=False)
                        dbscan_input = clustered_pixels[idx]
                    else:
                        dbscan_input = clustered_pixels

                    # DBSCAN
                    # For DBSCAN: use only 10,000 pixels max
                    max_dbscan_pixels = 10000

                    scaler = StandardScaler()
                    pixels_scaled = scaler.fit_transform(dbscan_input)
                    db = DBSCAN(eps=eps, min_samples=min_samples)
                    labels = db.fit_predict(pixels_scaled)

                    # Clean noisy pixels
                    clean_pixels = []
                    for i in range(len(dbscan_input)):
                        label = labels[i]
                        clean_pixels.append([0, 0, 0] if label == -1 else dbscan_input[i])

                    # Fill extra if sampling was used
                    if len(clustered_pixels) > max_dbscan_pixels:
                        clean_pixels.extend([[0, 0, 0]] * (len(clustered_pixels) - len(clean_pixels)))

                    final_pixels = np.array(clean_pixels, dtype=np.uint8).reshape(h, w, d)

                # Save final image
                final_img = Image.fromarray(final_pixels)
                final_image = 'compressed_clean.jpg'
                final_img.save(os.path.join(app.config['UPLOAD_FOLDER'], final_image), optimize=True, quality=90)

        except Exception as e:
            return f"⚠️ Error: {str(e)}", 500

    return render_template('kmean-dbscan-image.html', final_image=final_image)

@app.route('/DBscan')
def DBSCAN():
    return render_template('DBSCAN.html')


#test routs start here


@app.route('/Test-layout')
def test():
    return render_template('Test-layout.html')

@app.route('/Test-home')
def Test_home():
    return render_template('Test-home.html',active_page='Test-home')

@app.route('/Test-supervise')
def Test_supervise():
    return render_template('Test/Test-supervise.html', active_page='Test-supervise')


@app.route('/Test-unsupervised')
def Test_unsupervised():
    return render_template('Test/Test-unsupervised.html', active_page='Test-unsupervised')

# Semi-Supervised Learning page
@app.route('/Test-semi-supervised')
def Test_semi_supervised():
    return render_template('Test/Test-semi_supervised.html', active_page='Test-semi_supervised')

# Reinforcement Learning page
@app.route('/Test-reinforcement')
def Test_reinforcement():
    return render_template('Test/Test-reinforcement.html', active_page='Test-reinforcement')

# Ensemble Learning page
@app.route('/Test-ensemble')
def Test_ensemble():
    return render_template('Test/Test-ensemble.html', active_page='Test-ensemble')   

#Templates/Test/Quiz-Overview-Page.html 
@app.route('/linear-Quiz-Overview-Page')
def linear_Test_quiz_overview():
    return render_template('Test/linear-Quiz-Overview-Page.html', active_page='linear-Quiz-Overview-Page')


@app.route('/Quiz-test')
def Quiz_test():
    return render_template('Test/Quiz-test.html', active_page='Quiz-test')
#if the dtat file doesnt show or dsiapay use render_data like this render_template('data/yourfile.json')

# @app.route('/Quiz-test/<topic>')
# def quiz_topic(topic):
#     import json, os
#     count = int(request.args.get('count', 10))
#     try:
#         json_path = os.path.join(app.root_path, 'data', f'{topic}.json')
#         with open(json_path, 'r', encoding='utf-8') as f:
#             data = json.load(f)  # This is your JSON array

#         # Transform the JSON to match frontend expectations
#         transformed = []
#         for q in data[:count]:
#             transformed.append({
#                 "id": q.get("id"),
#                 "question": q.get("questionText"),
#                 "options": q.get("options"),
#                 "answer": q.get("options")[q.get("correctAnswerIndex")],
#                 "explanation": q.get("explanation")
#             })

#         return jsonify(transformed)

#     except FileNotFoundError:
#         return "Topic not found", 404
#     except json.JSONDecodeError:
# #         return "Invalid JSON file", 500

# @app.route('/Quiz-test/<topic>')
# def quiz_topic(topic):
#     import os, json
#     count = int(request.args.get('count', 10))
#     json_path = os.path.join(app.root_path, 'data', f'{topic}.json')

#     try:
#         with open(json_path, 'r', encoding='utf-8') as f:
#             data = json.load(f)

#         # If JSON is a dict with "questions" key
#         if isinstance(data, dict) and "questions" in data:
#             questions = data["questions"][:count]
#         elif isinstance(data, list):
#             questions = data[:count]
#         else:
#             return "Invalid JSON structure", 400

#         return jsonify(questions)
#     except FileNotFoundError:
#         return "Topic not found", 404
#     except json.JSONDecodeError:
#         return "Invalid JSON file", 400

# ✅ API Route: Send JSON quiz data
@app.route('/api/quiz/<topic>')
def get_quiz(topic):
    count = int(request.args.get('count', 10))
    file_path = os.path.join('data', f'{topic}.json')

    if not os.path.exists(file_path):
        return jsonify({'error': 'Topic not found'}), 404

    with open(file_path, 'r', encoding='utf-8') as f:
        data = json.load(f)

    questions = data.get('questions', [])[:count]
    return jsonify({'questions': questions})


@app.route('/polynomial-Quiz')
def polynomial_Test_quiz():
    return render_template('Test/polynomial-Quiz.html', active_page='polynomial-Quiz')

# -------------------------------
# Regression Algorithms
# -------------------------------
@app.route('/ridge-regression-test')
def ridge_regression_test():
    return render_template('Test/ridge-regression-test.html', active_page='ridge-regression-test')

@app.route('/lasso-regression-test')
def lasso_regression_test():
    return render_template('Test/lasso-regression-test.html', active_page='lasso-regression-test')

@app.route('/svr-test')
def svr_test():
    return render_template('Test/svr-r-test.html', active_page='svr-r-test')

@app.route('/decision-tree-regression-test')
def decision_tree_regression_test():
    return render_template('Test/decision-tree-regression-test.html', active_page='decision-tree-regression-test')

@app.route('/random-forest-regression-test')
def random_forest_regression_test():
    return render_template('Test/random-forest-regression-test.html', active_page='random-forest-regression-test')


# -------------------------------
# Classification Algorithms
# -------------------------------
@app.route('/logistic-regression-test')
def logistic_regression_test():
    return render_template('Test/logistic-regression-test.html', active_page='logistic-regression-test')

@app.route('/svm-c-test')
def svm_test():
    return render_template('Test/svm-c-test.html', active_page='svm-c-test')

@app.route('/decision-trees-c-test')
def decision_trees_test():
    return render_template('Test/decision-trees-c-test.html', active_page='decision-trees-c-test')

@app.route('/random-forest-c-test')
def random_forest_test():
    return render_template('Test/random-forest-c-test.html', active_page='random-forest-c-test')

@app.route('/gradient-descent-test')
def gradient_descent_test():
    return render_template('Test/gradient-descent-test.html', active_page='gradient-descent-test')

@app.route('/gradient-boosting-test')
def gradient_boosting_test():
    return render_template('Test/gradient-boosting-test.html', active_page='gradient-boosting-test')

@app.route('/xgboost-regression-test')
def xgboost_regression_test():
    return render_template('Test/xgboost-regression-test.html', active_page='xgboost-regression-test')

@app.route('/lightgbm-test')
def lightgbm_test():
    return render_template('Test/lightgbm-test.html', active_page='lightgbm-test')

@app.route('/knn-test')
def knn_test():
    return render_template('Test/knn-test.html', active_page='knn-test')

@app.route('/naive-bayes-test')
def naive_bayes_test():
    return render_template('Test/naive-bayes-test.html', active_page='naive-bayes-test')

@app.route('/neural-networks-test')
def neural_networks_test():
    return render_template('Test/neural-networks-test.html', active_page='neural-networks-test')


# -------------------------------
# Clustering
# -------------------------------
@app.route('/k-means-test')
def k_means_test():
    return render_template('Test/k-means-test.html', active_page='k-means-test')

@app.route('/hierarchical-clustering-test')
def hierarchical_clustering_test():
    return render_template('Test/hierarchical-clustering-test.html', active_page='hierarchical-clustering-test')

@app.route('/dbscan-test')
def dbscan_test():
    return render_template('Test/dbscan-test.html', active_page='dbscan-test')

@app.route('/gmm-test')
def gmm_test():
    return render_template('Test/gmm-test.html', active_page='gmm-test')


# -------------------------------
# Dimensionality Reduction
# -------------------------------
@app.route('/pca-test')
def pca_test():
    return render_template('Test/pca-test.html', active_page='pca-test')

@app.route('/tsne-test')
def tsne_test():
    return render_template('Test/tsne-test.html', active_page='tsne-test')

@app.route('/lda-test')
def lda_test():
    return render_template('Test/lda-test.html', active_page='lda-test')

@app.route('/ica-test')
def ica_test():
    return render_template('Test/ica-test.html', active_page='ica-test')


# -------------------------------
# Association Rule Learning
# -------------------------------
@app.route('/apriori-test')
def apriori_test():
    return render_template('Test/apriori-test.html', active_page='apriori-test')

@app.route('/eclat-test')
def eclat_test():
    return render_template('Test/eclat-test.html', active_page='eclat-test')


# -------------------------------
# Semi-Supervised Learning
# -------------------------------
@app.route('/generative-models-test')
def generative_models_test():
    return render_template('Test/generative-models-test.html', active_page='generative-models-test')

@app.route('/self-training-test')
def self_training_test():
    return render_template('Test/self-training-test.html', active_page='self-training-test')

@app.route('/transductive-svm-test')
def transductive_svm_test():
    return render_template('Test/transductive-svm-test.html', active_page='transductive-svm-test')

@app.route('/graph-based-methods-test')
def graph_based_methods_test():
    return render_template('Test/graph-based-methods-test.html', active_page='graph-based-methods-test')


# -------------------------------
# Reinforcement Learning
# -------------------------------
@app.route('/agent-environment-state-test')
def agent_environment_state_test():
    return render_template('Test/agent-environment-state-test.html', active_page='agent-environment-state-test')

@app.route('/action-policy-test')
def action_policy_test():
    return render_template('Test/action-policy-test.html', active_page='action-policy-test')

@app.route('/reward-value-function-test')
def reward_value_function_test():
    return render_template('Test/reward-value-function-test.html', active_page='reward-value-function-test')

@app.route('/q-learning-test')
def q_learning_test():
    return render_template('Test/q-learning-test.html', active_page='q-learning-test')

@app.route('/deep-reinforcement-learning-test')
def deep_reinforcement_learning_test():
    return render_template('Test/deep-reinforcement-learning-test.html', active_page='deep-reinforcement-learning-test')


# -------------------------------
# Ensemble Methods
# -------------------------------
@app.route('/bagging-test')
def bagging_test():
    return render_template('Test/bagging-test.html', active_page='bagging-test')

@app.route('/boosting-test')
def boosting_test():
    return render_template('Test/boosting-test.html', active_page='boosting-test')

@app.route('/stacking-test')
def stacking_test():
    return render_template('Test/stacking-test.html', active_page='stacking-test')

@app.route('/voting-test')
def voting_test():
    return render_template('Test/voting-test.html', active_page='voting-test')





if __name__ == "__main__":
    app.run(host="0.0.0.0", port=7860)