Spaces:
Sleeping
Sleeping
Upload 7 files
Browse files- README.md +34 -0
- app.py +325 -0
- arima_model.pkl +3 -0
- lstm_model.h5 +3 -0
- lstm_scaler.pkl +3 -0
- prophet_model.pkl +3 -0
- requirements.txt +9 -0
README.md
ADDED
|
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: Stock Price Forecasting
|
| 3 |
+
emoji: ๐
|
| 4 |
+
colorFrom: blue
|
| 5 |
+
colorTo: green
|
| 6 |
+
sdk: gradio
|
| 7 |
+
sdk_version: 4.16.0
|
| 8 |
+
app_file: app.py
|
| 9 |
+
pinned: false
|
| 10 |
+
license: mit
|
| 11 |
+
---
|
| 12 |
+
|
| 13 |
+
# Stock Price Forecasting App
|
| 14 |
+
|
| 15 |
+
This application uses three different models (ARIMA, Prophet, and LSTM) to forecast stock prices.
|
| 16 |
+
|
| 17 |
+
## Features
|
| 18 |
+
- Real-time stock data fetching from Yahoo Finance
|
| 19 |
+
- Multiple forecasting models
|
| 20 |
+
- Interactive visualizations
|
| 21 |
+
- Customizable forecast periods
|
| 22 |
+
|
| 23 |
+
## Models
|
| 24 |
+
1. **ARIMA** - Traditional statistical model
|
| 25 |
+
2. **Prophet** - Facebook's time series forecasting
|
| 26 |
+
3. **LSTM** - Deep learning neural network
|
| 27 |
+
|
| 28 |
+
## Usage
|
| 29 |
+
1. Enter a stock ticker symbol (e.g., AAPL, GOOGL)
|
| 30 |
+
2. Select forecast period (1-90 days)
|
| 31 |
+
3. Choose which model(s) to use
|
| 32 |
+
4. Click "Generate Forecast"
|
| 33 |
+
|
| 34 |
+
โ ๏ธ **Disclaimer**: For educational purposes only. Not financial advice.
|
app.py
ADDED
|
@@ -0,0 +1,325 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import numpy as np
|
| 4 |
+
import plotly.graph_objects as go
|
| 5 |
+
from datetime import datetime, timedelta
|
| 6 |
+
import pickle
|
| 7 |
+
import yfinance as yf
|
| 8 |
+
from statsmodels.tsa.arima.model import ARIMA
|
| 9 |
+
from prophet import Prophet
|
| 10 |
+
from tensorflow import keras
|
| 11 |
+
from sklearn.preprocessing import MinMaxScaler
|
| 12 |
+
import warnings
|
| 13 |
+
warnings.filterwarnings('ignore')
|
| 14 |
+
|
| 15 |
+
# Load your saved models (update paths as needed)
|
| 16 |
+
# For Hugging Face, these will be in the same directory as app.py
|
| 17 |
+
def load_models():
|
| 18 |
+
"""Load all three models"""
|
| 19 |
+
try:
|
| 20 |
+
# Load ARIMA model
|
| 21 |
+
with open('arima_model.pkl', 'rb') as f:
|
| 22 |
+
arima_model = pickle.load(f)
|
| 23 |
+
|
| 24 |
+
# Load Prophet model
|
| 25 |
+
with open('prophet_model.pkl', 'rb') as f:
|
| 26 |
+
prophet_model = pickle.load(f)
|
| 27 |
+
|
| 28 |
+
# Load LSTM model and scaler
|
| 29 |
+
lstm_model = keras.models.load_model('lstm_model.h5')
|
| 30 |
+
with open('lstm_scaler.pkl', 'rb') as f:
|
| 31 |
+
scaler = pickle.load(f)
|
| 32 |
+
|
| 33 |
+
return arima_model, prophet_model, lstm_model, scaler
|
| 34 |
+
except Exception as e:
|
| 35 |
+
print(f"Error loading models: {e}")
|
| 36 |
+
return None, None, None, None
|
| 37 |
+
|
| 38 |
+
# Global variables for models
|
| 39 |
+
arima_model, prophet_model, lstm_model, scaler = load_models()
|
| 40 |
+
SEQ_LENGTH = 60 # Should match your training
|
| 41 |
+
|
| 42 |
+
def fetch_stock_data(ticker, days=365):
|
| 43 |
+
"""Fetch stock data from Yahoo Finance"""
|
| 44 |
+
try:
|
| 45 |
+
end_date = datetime.now()
|
| 46 |
+
start_date = end_date - timedelta(days=days)
|
| 47 |
+
df = yf.download(ticker, start=start_date, end=end_date, progress=False)
|
| 48 |
+
if df.empty:
|
| 49 |
+
return None, f"No data found for ticker: {ticker}"
|
| 50 |
+
df = df[['Close']].copy()
|
| 51 |
+
df.columns = ['Price']
|
| 52 |
+
return df, None
|
| 53 |
+
except Exception as e:
|
| 54 |
+
return None, str(e)
|
| 55 |
+
|
| 56 |
+
def make_arima_forecast(data, days):
|
| 57 |
+
"""Make ARIMA forecast"""
|
| 58 |
+
try:
|
| 59 |
+
# Retrain ARIMA with recent data (or use loaded model)
|
| 60 |
+
model = ARIMA(data['Price'], order=(1, 1, 1))
|
| 61 |
+
fitted = model.fit()
|
| 62 |
+
forecast = fitted.forecast(steps=days)
|
| 63 |
+
return forecast.values
|
| 64 |
+
except Exception as e:
|
| 65 |
+
print(f"ARIMA Error: {e}")
|
| 66 |
+
return None
|
| 67 |
+
|
| 68 |
+
def make_prophet_forecast(data, days):
|
| 69 |
+
"""Make Prophet forecast"""
|
| 70 |
+
try:
|
| 71 |
+
# Prepare data for Prophet
|
| 72 |
+
prophet_data = pd.DataFrame({
|
| 73 |
+
'ds': data.index,
|
| 74 |
+
'y': data['Price'].values
|
| 75 |
+
})
|
| 76 |
+
|
| 77 |
+
# Create and fit model
|
| 78 |
+
model = Prophet(
|
| 79 |
+
daily_seasonality=True,
|
| 80 |
+
weekly_seasonality=True,
|
| 81 |
+
yearly_seasonality=True,
|
| 82 |
+
changepoint_prior_scale=0.05
|
| 83 |
+
)
|
| 84 |
+
model.fit(prophet_data)
|
| 85 |
+
|
| 86 |
+
# Make forecast
|
| 87 |
+
future = model.make_future_dataframe(periods=days)
|
| 88 |
+
forecast = model.predict(future)
|
| 89 |
+
return forecast['yhat'].tail(days).values
|
| 90 |
+
except Exception as e:
|
| 91 |
+
print(f"Prophet Error: {e}")
|
| 92 |
+
return None
|
| 93 |
+
|
| 94 |
+
def make_lstm_forecast(data, days, model, scaler, seq_length=60):
|
| 95 |
+
"""Make LSTM forecast"""
|
| 96 |
+
try:
|
| 97 |
+
# Scale the data
|
| 98 |
+
scaled_data = scaler.transform(data[['Price']])
|
| 99 |
+
|
| 100 |
+
# Prepare the last sequence
|
| 101 |
+
last_sequence = scaled_data[-seq_length:].reshape(1, seq_length, 1)
|
| 102 |
+
|
| 103 |
+
predictions = []
|
| 104 |
+
current_sequence = last_sequence.copy()
|
| 105 |
+
|
| 106 |
+
# Generate predictions day by day
|
| 107 |
+
for _ in range(days):
|
| 108 |
+
pred = model.predict(current_sequence, verbose=0)
|
| 109 |
+
predictions.append(pred[0, 0])
|
| 110 |
+
|
| 111 |
+
# Update sequence
|
| 112 |
+
current_sequence = np.append(current_sequence[:, 1:, :],
|
| 113 |
+
pred.reshape(1, 1, 1), axis=1)
|
| 114 |
+
|
| 115 |
+
# Inverse transform predictions
|
| 116 |
+
predictions = scaler.inverse_transform(np.array(predictions).reshape(-1, 1))
|
| 117 |
+
return predictions.flatten()
|
| 118 |
+
except Exception as e:
|
| 119 |
+
print(f"LSTM Error: {e}")
|
| 120 |
+
return None
|
| 121 |
+
|
| 122 |
+
def create_forecast_plot(historical_data, forecasts, ticker, model_names):
|
| 123 |
+
"""Create interactive plotly chart"""
|
| 124 |
+
fig = go.Figure()
|
| 125 |
+
|
| 126 |
+
# Historical data
|
| 127 |
+
fig.add_trace(go.Scatter(
|
| 128 |
+
x=historical_data.index,
|
| 129 |
+
y=historical_data['Price'],
|
| 130 |
+
mode='lines',
|
| 131 |
+
name='Historical Price',
|
| 132 |
+
line=dict(color='blue', width=2)
|
| 133 |
+
))
|
| 134 |
+
|
| 135 |
+
# Generate future dates
|
| 136 |
+
last_date = historical_data.index[-1]
|
| 137 |
+
future_dates = pd.date_range(start=last_date + timedelta(days=1),
|
| 138 |
+
periods=len(forecasts[0]))
|
| 139 |
+
|
| 140 |
+
# Plot forecasts
|
| 141 |
+
colors = ['red', 'purple', 'orange']
|
| 142 |
+
for i, (forecast, name) in enumerate(zip(forecasts, model_names)):
|
| 143 |
+
if forecast is not None:
|
| 144 |
+
fig.add_trace(go.Scatter(
|
| 145 |
+
x=future_dates,
|
| 146 |
+
y=forecast,
|
| 147 |
+
mode='lines+markers',
|
| 148 |
+
name=f'{name} Forecast',
|
| 149 |
+
line=dict(color=colors[i], width=2, dash='dash'),
|
| 150 |
+
marker=dict(size=6)
|
| 151 |
+
))
|
| 152 |
+
|
| 153 |
+
fig.update_layout(
|
| 154 |
+
title=f'{ticker} Stock Price Forecast',
|
| 155 |
+
xaxis_title='Date',
|
| 156 |
+
yaxis_title='Price ($)',
|
| 157 |
+
hovermode='x unified',
|
| 158 |
+
template='plotly_white',
|
| 159 |
+
height=600,
|
| 160 |
+
showlegend=True,
|
| 161 |
+
legend=dict(
|
| 162 |
+
yanchor="top",
|
| 163 |
+
y=0.99,
|
| 164 |
+
xanchor="left",
|
| 165 |
+
x=0.01
|
| 166 |
+
)
|
| 167 |
+
)
|
| 168 |
+
|
| 169 |
+
return fig
|
| 170 |
+
|
| 171 |
+
def predict_stock(ticker, forecast_days, model_choice):
|
| 172 |
+
"""Main prediction function"""
|
| 173 |
+
# Validate inputs
|
| 174 |
+
if not ticker:
|
| 175 |
+
return None, "Please enter a stock ticker symbol", None
|
| 176 |
+
|
| 177 |
+
ticker = ticker.upper().strip()
|
| 178 |
+
|
| 179 |
+
# Fetch data
|
| 180 |
+
data, error = fetch_stock_data(ticker, days=730) # 2 years of data
|
| 181 |
+
if error:
|
| 182 |
+
return None, f"Error: {error}", None
|
| 183 |
+
|
| 184 |
+
# Make forecasts based on model choice
|
| 185 |
+
forecasts = []
|
| 186 |
+
model_names = []
|
| 187 |
+
|
| 188 |
+
if model_choice in ["All Models", "ARIMA"]:
|
| 189 |
+
arima_forecast = make_arima_forecast(data, forecast_days)
|
| 190 |
+
if arima_forecast is not None:
|
| 191 |
+
forecasts.append(arima_forecast)
|
| 192 |
+
model_names.append("ARIMA")
|
| 193 |
+
|
| 194 |
+
if model_choice in ["All Models", "Prophet"]:
|
| 195 |
+
prophet_forecast = make_prophet_forecast(data, forecast_days)
|
| 196 |
+
if prophet_forecast is not None:
|
| 197 |
+
forecasts.append(prophet_forecast)
|
| 198 |
+
model_names.append("Prophet")
|
| 199 |
+
|
| 200 |
+
if model_choice in ["All Models", "LSTM"] and lstm_model is not None:
|
| 201 |
+
lstm_forecast = make_lstm_forecast(data, forecast_days, lstm_model, scaler, SEQ_LENGTH)
|
| 202 |
+
if lstm_forecast is not None:
|
| 203 |
+
forecasts.append(lstm_forecast)
|
| 204 |
+
model_names.append("LSTM")
|
| 205 |
+
|
| 206 |
+
if not forecasts:
|
| 207 |
+
return None, "Failed to generate forecasts. Please try again.", None
|
| 208 |
+
|
| 209 |
+
# Create plot
|
| 210 |
+
fig = create_forecast_plot(data, forecasts, ticker, model_names)
|
| 211 |
+
|
| 212 |
+
# Create forecast table
|
| 213 |
+
future_dates = pd.date_range(
|
| 214 |
+
start=data.index[-1] + timedelta(days=1),
|
| 215 |
+
periods=forecast_days
|
| 216 |
+
)
|
| 217 |
+
|
| 218 |
+
forecast_df = pd.DataFrame({'Date': future_dates.strftime('%Y-%m-%d')})
|
| 219 |
+
for forecast, name in zip(forecasts, model_names):
|
| 220 |
+
forecast_df[f'{name} Prediction ($)'] = np.round(forecast, 2)
|
| 221 |
+
|
| 222 |
+
# Summary statistics
|
| 223 |
+
summary = f"""
|
| 224 |
+
๐ **Forecast Summary for {ticker}**
|
| 225 |
+
|
| 226 |
+
- Current Price: ${data['Price'].iloc[-1]:.2f}
|
| 227 |
+
- Forecast Period: {forecast_days} days
|
| 228 |
+
- Models Used: {', '.join(model_names)}
|
| 229 |
+
|
| 230 |
+
**Predicted Price Range (Day {forecast_days}):**
|
| 231 |
+
"""
|
| 232 |
+
|
| 233 |
+
for forecast, name in zip(forecasts, model_names):
|
| 234 |
+
final_price = forecast[-1]
|
| 235 |
+
change = ((final_price - data['Price'].iloc[-1]) / data['Price'].iloc[-1]) * 100
|
| 236 |
+
summary += f"\n- {name}: ${final_price:.2f} ({change:+.2f}%)"
|
| 237 |
+
|
| 238 |
+
return fig, summary, forecast_df
|
| 239 |
+
|
| 240 |
+
# Create Gradio Interface
|
| 241 |
+
with gr.Blocks(title="Stock Price Forecasting", theme=gr.themes.Soft()) as demo:
|
| 242 |
+
gr.Markdown(
|
| 243 |
+
"""
|
| 244 |
+
# ๐ Stock Price Forecasting App
|
| 245 |
+
|
| 246 |
+
Predict future stock prices using ARIMA, Prophet, and LSTM models.
|
| 247 |
+
Enter a stock ticker symbol and select forecast parameters below.
|
| 248 |
+
|
| 249 |
+
**Note:** Predictions are for educational purposes only. Not financial advice.
|
| 250 |
+
"""
|
| 251 |
+
)
|
| 252 |
+
|
| 253 |
+
with gr.Row():
|
| 254 |
+
with gr.Column(scale=1):
|
| 255 |
+
ticker_input = gr.Textbox(
|
| 256 |
+
label="Stock Ticker Symbol",
|
| 257 |
+
placeholder="e.g., AAPL, GOOGL, TSLA",
|
| 258 |
+
value="AAPL"
|
| 259 |
+
)
|
| 260 |
+
|
| 261 |
+
forecast_days = gr.Slider(
|
| 262 |
+
minimum=1,
|
| 263 |
+
maximum=90,
|
| 264 |
+
value=30,
|
| 265 |
+
step=1,
|
| 266 |
+
label="Forecast Days"
|
| 267 |
+
)
|
| 268 |
+
|
| 269 |
+
model_choice = gr.Radio(
|
| 270 |
+
choices=["All Models", "ARIMA", "Prophet", "LSTM"],
|
| 271 |
+
value="All Models",
|
| 272 |
+
label="Select Model(s)"
|
| 273 |
+
)
|
| 274 |
+
|
| 275 |
+
predict_btn = gr.Button("๐ฎ Generate Forecast", variant="primary", size="lg")
|
| 276 |
+
|
| 277 |
+
with gr.Column(scale=2):
|
| 278 |
+
output_plot = gr.Plot(label="Forecast Visualization")
|
| 279 |
+
|
| 280 |
+
with gr.Row():
|
| 281 |
+
output_summary = gr.Markdown(label="Forecast Summary")
|
| 282 |
+
|
| 283 |
+
with gr.Row():
|
| 284 |
+
output_table = gr.Dataframe(
|
| 285 |
+
label="Detailed Forecast",
|
| 286 |
+
wrap=True,
|
| 287 |
+
interactive=False
|
| 288 |
+
)
|
| 289 |
+
|
| 290 |
+
# Examples
|
| 291 |
+
gr.Examples(
|
| 292 |
+
examples=[
|
| 293 |
+
["AAPL", 30, "All Models"],
|
| 294 |
+
["GOOGL", 14, "Prophet"],
|
| 295 |
+
["TSLA", 60, "LSTM"],
|
| 296 |
+
["MSFT", 45, "ARIMA"],
|
| 297 |
+
],
|
| 298 |
+
inputs=[ticker_input, forecast_days, model_choice],
|
| 299 |
+
)
|
| 300 |
+
|
| 301 |
+
# Connect the button to the function
|
| 302 |
+
predict_btn.click(
|
| 303 |
+
fn=predict_stock,
|
| 304 |
+
inputs=[ticker_input, forecast_days, model_choice],
|
| 305 |
+
outputs=[output_plot, output_summary, output_table]
|
| 306 |
+
)
|
| 307 |
+
|
| 308 |
+
gr.Markdown(
|
| 309 |
+
"""
|
| 310 |
+
---
|
| 311 |
+
### ๐ About the Models
|
| 312 |
+
|
| 313 |
+
- **ARIMA**: Statistical model for time series forecasting
|
| 314 |
+
- **Prophet**: Facebook's forecasting tool, excellent for seasonality
|
| 315 |
+
- **LSTM**: Deep learning model that captures complex patterns
|
| 316 |
+
|
| 317 |
+
### โ ๏ธ Disclaimer
|
| 318 |
+
This tool is for educational and research purposes only. Stock market predictions are inherently uncertain.
|
| 319 |
+
Always conduct thorough research and consult with financial advisors before making investment decisions.
|
| 320 |
+
"""
|
| 321 |
+
)
|
| 322 |
+
|
| 323 |
+
# Launch the app
|
| 324 |
+
if __name__ == "__main__":
|
| 325 |
+
demo.launch()
|
arima_model.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f03d08049cdf6937a0c1bd79933cdb5822a144f05313ed980e5578c5a8dff1e7
|
| 3 |
+
size 2287121
|
lstm_model.h5
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:04df565ab23e73b8b8af3f36f94cabe79c0867dfa9afe427c4e59fb446744583
|
| 3 |
+
size 426896
|
lstm_scaler.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:cef5a6476cc98fe5a756665fb1917a7f3a602e72b0c46c317466f29013fb27a7
|
| 3 |
+
size 616
|
prophet_model.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ff674ae41051bc6246ea30276ccf3671b986f7dc039c078141c1de2b61801649
|
| 3 |
+
size 98483
|
requirements.txt
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio==4.16.0
|
| 2 |
+
pandas==2.1.4
|
| 3 |
+
numpy==1.26.3
|
| 4 |
+
plotly==5.18.0
|
| 5 |
+
yfinance==0.2.35
|
| 6 |
+
statsmodels==0.14.1
|
| 7 |
+
prophet==1.1.5
|
| 8 |
+
tensorflow==2.15.0
|
| 9 |
+
scikit-learn==1.3.2
|