- Cusps and Commensurability Classes of Hyperbolic 4-Manifolds There are six orientable, compact, flat 3-manifolds that can occur as cusp cross-sections of hyperbolic 4-manifolds. This paper provides criteria for exactly when a given commensurability class of arithmetic hyperbolic 4-manifolds contains a representative with a given cusp type. In particular, for three of the six cusp types, we provide infinitely many examples of commensurability classes that contain no manifolds with cusps of the given type; no such examples were previously known for any cusp type. 1 authors · Sep 24, 2021
- Cobordism and Concordance of Surfaces in 4-Manifolds We show that two properly embedded compact surfaces in an orientable 4-manifold are cobordant if and only if they are Z/2-homologous and either the 4-manifold has boundary or the surfaces have the same normal Euler number. If the 4-manifold is simply-connected and the surfaces are closed, non-orientable, and cobordant, we show that they are in fact concordant. This completes the classification of closed surfaces in simply-connected 4-manifolds up to concordance. Our methods give new constructions of cobordisms with prescribed boundaries, and completely determine when a given cobordism between the boundaries extends to a cobordism or concordance between the surfaces. We obtain our concordance results by extending Sunukjian's method of ambient surgery to the unoriented case using Pin^--structures. We also discuss conditions for an arbitrary codimension 2 properly embedded submanifold to admit an unoriented spanning manifold with prescribed boundary. All results hold in both the smooth and topological categories. 1 authors · Jan 29
- Computational Graph Decompositions I: Oriented Berge-Fulkerson Conjecture The Berge-Fulkerson conjecture states that every bridgeless cubic graph can be covered with six perfect matchings such that each edge is covered exactly twice. An equivalent reformulation is that it's possible to find a 6-cycle 4-cover. In this paper we discuss the oriented version (o6c4c) of the latter statement, pose it as a conjecture and prove it for the family of Isaacs flower snarks. Similarly to the case of oriented cycle double cover, we can always construct an orientable surface (possibly with boundary) from an o6c4c solution. If the o6c4c solution itself splits into two (not necessarily oriented) cycle double covers, then it's also possible to build another pair of orientable surfaces (also possibly with boundaries). Finally we show how to build a ribbon graph, and for some special o6c4c cases we show that this ribbon graph corresponds to an oriented 6-cycle double cover. Github: https://github.com/gexahedron/cycle-double-covers 1 authors · Jan 9, 2025