Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeIterLara: A Turing Complete Algebra for Big Data, AI, Scientific Computing, and Database
Lara is a key-value algebra that aims at unifying linear and relational algebra with three types of operation abstraction. The study of Lara's expressive ability reports that it can represent relational algebra and most linear algebra operations. However, several essential computations, such as matrix inversion and determinant, cannot be expressed in Lara. Lara cannot represent global and iterative computation, either. This article proposes IterLara, extending Lara with iterative operators, to provide an algebraic model that unifies operations in general-purpose computing, like big data, AI, scientific computing, and database. We study the expressive ability of Lara and IterLara and prove that IterLara with aggregation functions can represent matrix inversion, determinant. Besides, we demonstrate that IterLara with no limitation of function utility is Turing complete. We also propose the Operation Count (OP) as a metric of computation amount for IterLara and ensure that the OP metric is in accordance with the existing computation metrics.
Automatic Functional Differentiation in JAX
We extend JAX with the capability to automatically differentiate higher-order functions (functionals and operators). By representing functions as a generalization of arrays, we seamlessly use JAX's existing primitive system to implement higher-order functions. We present a set of primitive operators that serve as foundational building blocks for constructing several key types of functionals. For every introduced primitive operator, we derive and implement both linearization and transposition rules, aligning with JAX's internal protocols for forward and reverse mode automatic differentiation. This enhancement allows for functional differentiation in the same syntax traditionally use for functions. The resulting functional gradients are themselves functions ready to be invoked in python. We showcase this tool's efficacy and simplicity through applications where functional derivatives are indispensable. The source code of this work is released at https://github.com/sail-sg/autofd .
Evolving Normalization-Activation Layers
Normalization layers and activation functions are fundamental components in deep networks and typically co-locate with each other. Here we propose to design them using an automated approach. Instead of designing them separately, we unify them into a single tensor-to-tensor computation graph, and evolve its structure starting from basic mathematical functions. Examples of such mathematical functions are addition, multiplication and statistical moments. The use of low-level mathematical functions, in contrast to the use of high-level modules in mainstream NAS, leads to a highly sparse and large search space which can be challenging for search methods. To address the challenge, we develop efficient rejection protocols to quickly filter out candidate layers that do not work well. We also use multi-objective evolution to optimize each layer's performance across many architectures to prevent overfitting. Our method leads to the discovery of EvoNorms, a set of new normalization-activation layers with novel, and sometimes surprising structures that go beyond existing design patterns. For example, some EvoNorms do not assume that normalization and activation functions must be applied sequentially, nor need to center the feature maps, nor require explicit activation functions. Our experiments show that EvoNorms work well on image classification models including ResNets, MobileNets and EfficientNets but also transfer well to Mask R-CNN with FPN/SpineNet for instance segmentation and to BigGAN for image synthesis, outperforming BatchNorm and GroupNorm based layers in many cases.
Polynomial, trigonometric, and tropical activations
Which functions can be used as activations in deep neural networks? This article explores families of functions based on orthonormal bases, including the Hermite polynomial basis and the Fourier trigonometric basis, as well as a basis resulting from the tropicalization of a polynomial basis. Our study shows that, through simple variance-preserving initialization and without additional clamping mechanisms, these activations can successfully be used to train deep models, such as GPT-2 for next-token prediction on OpenWebText and ConvNeXt for image classification on ImageNet. Our work addresses the issue of exploding and vanishing activations and gradients, particularly prevalent with polynomial activations, and opens the door for improving the efficiency of large-scale learning tasks. Furthermore, our approach provides insight into the structure of neural networks, revealing that networks with polynomial activations can be interpreted as multivariate polynomial mappings. Finally, using Hermite interpolation, we show that our activations can closely approximate classical ones in pre-trained models by matching both the function and its derivative, making them especially useful for fine-tuning tasks. These activations are available in the torchortho library, which can be accessed via: https://github.com/K-H-Ismail/torchortho.
A Universal Space of Arithmetic Functions:The Banach--Hilbert Hybrid Space U
We introduce a new functional space U designed to contain all classical arithmetic functions (Mobius, von Mangoldt, Euler phi, divisor functions, Dirichlet characters, etc.). The norm of U combines a Hilbert-type component, based on square summability of Dirichlet coefficients for every s > 1, with a Banach component controlling logarithmic averages of partial sums. We prove that U is a complete Banach space which embeds continuously all standard Hilbert spaces of Dirichlet series and allows natural actions of Dirichlet convolution and shift operators. This framework provides a unified analytic setting for classical and modern problems in multiplicative number theory.
MathQA: Towards Interpretable Math Word Problem Solving with Operation-Based Formalisms
We introduce a large-scale dataset of math word problems and an interpretable neural math problem solver that learns to map problems to operation programs. Due to annotation challenges, current datasets in this domain have been either relatively small in scale or did not offer precise operational annotations over diverse problem types. We introduce a new representation language to model precise operation programs corresponding to each math problem that aim to improve both the performance and the interpretability of the learned models. Using this representation language, our new dataset, MathQA, significantly enhances the AQuA dataset with fully-specified operational programs. We additionally introduce a neural sequence-to-program model enhanced with automatic problem categorization. Our experiments show improvements over competitive baselines in our MathQA as well as the AQuA dataset. The results are still significantly lower than human performance indicating that the dataset poses new challenges for future research. Our dataset is available at: https://math-qa.github.io/math-QA/
AutoNumerics-Zero: Automated Discovery of State-of-the-Art Mathematical Functions
Computers calculate transcendental functions by approximating them through the composition of a few limited-precision instructions. For example, an exponential can be calculated with a Taylor series. These approximation methods were developed over the centuries by mathematicians, who emphasized the attainability of arbitrary precision. Computers, however, operate on few limited precision types, such as the popular float32. In this study, we show that when aiming for limited precision, existing approximation methods can be outperformed by programs automatically discovered from scratch by a simple evolutionary algorithm. In particular, over real numbers, our method can approximate the exponential function reaching orders of magnitude more precision for a given number of operations when compared to previous approaches. More practically, over float32 numbers and constrained to less than 1 ULP of error, the same method attains a speedup over baselines by generating code that triggers better XLA/LLVM compilation paths. In other words, in both cases, evolution searched a vast space of possible programs, without knowledge of mathematics, to discover previously unknown optimized approximations to high precision, for the first time. We also give evidence that these results extend beyond the exponential. The ubiquity of transcendental functions suggests that our method has the potential to reduce the cost of scientific computing applications.
Function Assistant: A Tool for NL Querying of APIs
In this paper, we describe Function Assistant, a lightweight Python-based toolkit for querying and exploring source code repositories using natural language. The toolkit is designed to help end-users of a target API quickly find information about functions through high-level natural language queries and descriptions. For a given text query and background API, the tool finds candidate functions by performing a translation from the text to known representations in the API using the semantic parsing approach of Richardson and Kuhn (2017). Translations are automatically learned from example text-code pairs in example APIs. The toolkit includes features for building translation pipelines and query engines for arbitrary source code projects. To explore this last feature, we perform new experiments on 27 well-known Python projects hosted on Github.
Automated Formalization via Conceptual Retrieval-Augmented LLMs
Interactive theorem provers (ITPs) require manual formalization, which is labor-intensive and demands expert knowledge. While automated formalization offers a potential solution, it faces two major challenges: model hallucination (e.g., undefined predicates, symbol misuse, and version incompatibility) and the semantic gap caused by ambiguous or missing premises in natural language descriptions. To address these issues, we propose CRAMF, a Concept-driven Retrieval-Augmented Mathematical Formalization framework. CRAMF enhances LLM-based autoformalization by retrieving formal definitions of core mathematical concepts, providing contextual grounding during code generation. However, applying retrieval-augmented generation (RAG) in this setting is non-trivial due to the lack of structured knowledge bases, the polymorphic nature of mathematical concepts, and the high precision required in formal retrieval. We introduce a framework for automatically constructing a concept-definition knowledge base from Mathlib4, the standard mathematical library for the Lean 4 theorem prover, indexing over 26,000 formal definitions and 1,000+ core mathematical concepts. To address conceptual polymorphism, we propose contextual query augmentation with domain- and application-level signals. In addition, we design a dual-channel hybrid retrieval strategy with reranking to ensure accurate and relevant definition retrieval. Experiments on miniF2F, ProofNet, and our newly proposed AdvancedMath benchmark show that CRAMF can be seamlessly integrated into LLM-based autoformalizers, yielding consistent improvements in translation accuracy, achieving up to 62.1% and an average of 29.9% relative improvement.
Effects of Plasticity Functions on Neural Assemblies
We explore the effects of various plasticity functions on assemblies of neurons. To bridge the gap between experimental and computational theories we make use of a conceptual framework, the Assembly Calculus, which is a formal system for the description of brain function based on assemblies of neurons. The Assembly Calculus includes operations for projecting, associating, and merging assemblies of neurons. Our research is focused on simulating different plasticity functions with Assembly Calculus. Our main contribution is the modification and evaluation of the projection operation. We experiment with Oja's and Spike Time-Dependent Plasticity (STDP) rules and test the effect of various hyper-parameters.
Alchemy: Amplifying Theorem-Proving Capability through Symbolic Mutation
Formal proofs are challenging to write even for experienced experts. Recent progress in Neural Theorem Proving (NTP) shows promise in expediting this process. However, the formal corpora available on the Internet are limited compared to the general text, posing a significant data scarcity challenge for NTP. To address this issue, this work proposes Alchemy, a general framework for data synthesis that constructs formal theorems through symbolic mutation. Specifically, for each candidate theorem in Mathlib, we identify all invocable theorems that can be used to rewrite or apply to it. Subsequently, we mutate the candidate theorem by replacing the corresponding term in the statement with its equivalent form or antecedent. As a result, our method increases the number of theorems in Mathlib by an order of magnitude, from 110k to 6M. Furthermore, we perform continual pretraining and supervised finetuning on this augmented corpus for large language models. Experimental results demonstrate the effectiveness of our approach, achieving a 5% absolute performance improvement on Leandojo benchmark. Additionally, our synthetic data achieve a 2.5% absolute performance gain on the out-of-distribution miniF2F benchmark. To provide further insights, we conduct a comprehensive analysis of synthetic data composition and the training paradigm, offering valuable guidance for developing a strong theorem prover.
Large Language Models for Mathematical Analysis
Mathematical problem-solving is a key field in artificial intelligence (AI) and a critical benchmark for evaluating the capabilities of large language models (LLMs). While extensive research has focused on mathematical problem-solving, most existing work and datasets concentrate on computational tasks, leaving gaps in areas like mathematical analysis, which demands rigorous proofs and formal reasoning. We developed the DEMI-MathAnalysis dataset, comprising proof-based problems from mathematical analysis topics such as Sequences and Limits, Infinite Series, and Convex Functions. We also designed a guiding framework to rigorously enhance LLMs' ability to solve these problems. Through fine-tuning LLMs on this dataset and employing our framework, we observed significant improvements in their capability to generate logical, complete, and elegant proofs. This work addresses critical gaps in mathematical reasoning and contributes to advancing trustworthy AI capable of handling formalized mathematical language. The code is publicly accessible at LLMs for Mathematical Analysis.
Herald: A Natural Language Annotated Lean 4 Dataset
Verifiable formal languages like Lean have profoundly impacted mathematical reasoning, particularly through the use of large language models (LLMs) for automated reasoning. A significant challenge in training LLMs for these formal languages is the lack of parallel datasets that align natural language with formal language proofs. To address this challenge, this paper introduces a novel framework for translating the Mathlib4 corpus (a unified library of mathematics in formal language Lean 4) into natural language. Building upon this, we employ a dual augmentation strategy that combines tactic-based and informal-based approaches, leveraging the Lean-jixia system, a Lean 4 analyzer. We present the results of this pipeline on Mathlib4 as Herald (Hierarchy and Retrieval-based Translated Lean Dataset). We also propose the Herald Translator, which is fine-tuned on Herald. Herald translator achieves a 93.2% accuracy (Pass@128) on formalizing statements in the miniF2F-test and a 22.5% accuracy on our internal graduate-level textbook dataset, outperforming InternLM2-Math-Plus-7B (74.0% and 7.5%) and TheoremLlama (50.1% and 4.0%). Furthermore, we propose a section-level translation framework for real-world applications. As a direct application of Herald translator, we have successfully translated a template section in the Stack project, marking a notable progress in the automatic formalization of graduate-level mathematical literature. Our model, along with the datasets, will be open-sourced to the public soon.
Accurate Computation of the Logarithm of Modified Bessel Functions on GPUs
Bessel functions are critical in scientific computing for applications such as machine learning, protein structure modeling, and robotics. However, currently, available routines lack precision or fail for certain input ranges, such as when the order v is large, and GPU-specific implementations are limited. We address the precision limitations of current numerical implementations while dramatically improving the runtime. We propose two novel algorithms for computing the logarithm of modified Bessel functions of the first and second kinds by computing intermediate values on a logarithmic scale. Our algorithms are robust and never have issues with underflows or overflows while having relative errors on the order of machine precision, even for inputs where existing libraries fail. In C++/CUDA, our algorithms have median and maximum speedups of 45x and 6150x for GPU and 17x and 3403x for CPU, respectively, over the ranges of inputs and third-party libraries tested. Compared to SciPy, the algorithms have median and maximum speedups of 77x and 300x for GPU and 35x and 98x for CPU, respectively, over the tested inputs. The ability to robustly compute a solution and the low relative errors allow us to fit von Mises-Fisher, vMF, distributions to high-dimensional neural network features. This is, e.g., relevant for uncertainty quantification in metric learning. We obtain image feature data by processing CIFAR10 training images with the convolutional layers of a pre-trained ResNet50. We successfully fit vMF distributions to 2048-, 8192-, and 32768-dimensional image feature data using our algorithms. Our approach provides fast and accurate results while existing implementations in SciPy and mpmath fail to fit successfully. Our approach is readily implementable on GPUs, and we provide a fast open-source implementation alongside this paper.
MultiMath: Bridging Visual and Mathematical Reasoning for Large Language Models
The rapid development of large language models (LLMs) has spurred extensive research into their domain-specific capabilities, particularly mathematical reasoning. However, most open-source LLMs focus solely on mathematical reasoning, neglecting the integration with visual injection, despite the fact that many mathematical tasks rely on visual inputs such as geometric diagrams, charts, and function plots. To fill this gap, we introduce MultiMath-7B, a multimodal large language model that bridges the gap between math and vision. MultiMath-7B is trained through a four-stage process, focusing on vision-language alignment, visual and math instruction-tuning, and process-supervised reinforcement learning. We also construct a novel, diverse and comprehensive multimodal mathematical dataset, MultiMath-300K, which spans K-12 levels with image captions and step-wise solutions. MultiMath-7B achieves state-of-the-art (SOTA) performance among open-source models on existing multimodal mathematical benchmarks and also excels on text-only mathematical benchmarks. Our model and dataset are available at {blue{https://github.com/pengshuai-rin/MultiMath}}.
MathCoder2: Better Math Reasoning from Continued Pretraining on Model-translated Mathematical Code
Code has been shown to be effective in enhancing the mathematical reasoning abilities of large language models due to its precision and accuracy. Previous works involving continued mathematical pretraining often include code that utilizes math-related packages, which are primarily designed for fields such as engineering, machine learning, signal processing, or module testing, rather than being directly focused on mathematical reasoning. In this paper, we introduce a novel method for generating mathematical code accompanied with corresponding reasoning steps for continued pretraining. Our approach begins with the construction of a high-quality mathematical continued pretraining dataset by incorporating math-related web data, code using mathematical packages, math textbooks, and synthetic data. Next, we construct reasoning steps by extracting LaTeX expressions, the conditions needed for the expressions, and the results of the expressions from the previously collected dataset. Based on this extracted information, we generate corresponding code to accurately capture the mathematical reasoning process. Appending the generated code to each reasoning step results in data consisting of paired natural language reasoning steps and their corresponding code. Combining this data with the original dataset results in a 19.2B-token high-performing mathematical pretraining corpus, which we name MathCode-Pile. Training several popular base models with this corpus significantly improves their mathematical abilities, leading to the creation of the MathCoder2 family of models. All of our data processing and training code is open-sourced, ensuring full transparency and easy reproducibility of the entire data collection and training pipeline. The code is released at https://github.com/mathllm/MathCoder2 .
Principled Approaches for Extending Neural Architectures to Function Spaces for Operator Learning
A wide range of scientific problems, such as those described by continuous-time dynamical systems and partial differential equations (PDEs), are naturally formulated on function spaces. While function spaces are typically infinite-dimensional, deep learning has predominantly advanced through applications in computer vision and natural language processing that focus on mappings between finite-dimensional spaces. Such fundamental disparities in the nature of the data have limited neural networks from achieving a comparable level of success in scientific applications as seen in other fields. Neural operators are a principled way to generalize neural networks to mappings between function spaces, offering a pathway to replicate deep learning's transformative impact on scientific problems. For instance, neural operators can learn solution operators for entire classes of PDEs, e.g., physical systems with different boundary conditions, coefficient functions, and geometries. A key factor in deep learning's success has been the careful engineering of neural architectures through extensive empirical testing. Translating these neural architectures into neural operators allows operator learning to enjoy these same empirical optimizations. However, prior neural operator architectures have often been introduced as standalone models, not directly derived as extensions of existing neural network architectures. In this paper, we identify and distill the key principles for constructing practical implementations of mappings between infinite-dimensional function spaces. Using these principles, we propose a recipe for converting several popular neural architectures into neural operators with minimal modifications. This paper aims to guide practitioners through this process and details the steps to make neural operators work in practice. Our code can be found at https://github.com/neuraloperator/NNs-to-NOs
Addition is All You Need for Energy-efficient Language Models
Large neural networks spend most computation on floating point tensor multiplications. In this work, we find that a floating point multiplier can be approximated by one integer adder with high precision. We propose the linear-complexity multiplication L-Mul algorithm that approximates floating point number multiplication with integer addition operations. The new algorithm costs significantly less computation resource than 8-bit floating point multiplication but achieves higher precision. Compared to 8-bit floating point multiplications, the proposed method achieves higher precision but consumes significantly less bit-level computation. Since multiplying floating point numbers requires substantially higher energy compared to integer addition operations, applying the L-Mul operation in tensor processing hardware can potentially reduce 95% energy cost by element-wise floating point tensor multiplications and 80% energy cost of dot products. We calculated the theoretical error expectation of L-Mul, and evaluated the algorithm on a wide range of textual, visual, and symbolic tasks, including natural language understanding, structural reasoning, mathematics, and commonsense question answering. Our numerical analysis experiments agree with the theoretical error estimation, which indicates that L-Mul with 4-bit mantissa achieves comparable precision as float8_e4m3 multiplications, and L-Mul with 3-bit mantissa outperforms float8_e5m2. Evaluation results on popular benchmarks show that directly applying L-Mul to the attention mechanism is almost lossless. We further show that replacing all floating point multiplications with 3-bit mantissa L-Mul in a transformer model achieves equivalent precision as using float8_e4m3 as accumulation precision in both fine-tuning and inference.
InternLM-Math: Open Math Large Language Models Toward Verifiable Reasoning
The math abilities of large language models can represent their abstract reasoning ability. In this paper, we introduce and open-source our math reasoning LLMs InternLM-Math which is continue pre-trained from InternLM2. We unify chain-of-thought reasoning, reward modeling, formal reasoning, data augmentation, and code interpreter in a unified seq2seq format and supervise our model to be a versatile math reasoner, verifier, prover, and augmenter. These abilities can be used to develop the next math LLMs or self-iteration. InternLM-Math obtains open-sourced state-of-the-art performance under the setting of in-context learning, supervised fine-tuning, and code-assisted reasoning in various informal and formal benchmarks including GSM8K, MATH, Hungary math exam, MathBench-ZH, and MiniF2F. Our pre-trained model achieves 30.3 on the MiniF2F test set without fine-tuning. We further explore how to use LEAN to solve math problems and study its performance under the setting of multi-task learning which shows the possibility of using LEAN as a unified platform for solving and proving in math. Our models, codes, and data are released at https://github.com/InternLM/InternLM-Math.
Executing Arithmetic: Fine-Tuning Large Language Models as Turing Machines
Large Language Models (LLMs) have demonstrated remarkable capabilities across a wide range of natural language processing and reasoning tasks. However, their performance in the foundational domain of arithmetic remains unsatisfactory. When dealing with arithmetic tasks, LLMs often memorize specific examples rather than learning the underlying computational logic, limiting their ability to generalize to new problems. In this paper, we propose a Composable Arithmetic Execution Framework (CAEF) that enables LLMs to learn to execute step-by-step computations by emulating Turing Machines, thereby gaining a genuine understanding of computational logic. Moreover, the proposed framework is highly scalable, allowing composing learned operators to significantly reduce the difficulty of learning complex operators. In our evaluation, CAEF achieves nearly 100% accuracy across seven common mathematical operations on the LLaMA 3.1-8B model, effectively supporting computations involving operands with up to 100 digits, a level where GPT-4o falls short noticeably in some settings.
MathFusion: Enhancing Mathematic Problem-solving of LLM through Instruction Fusion
Large Language Models (LLMs) have shown impressive progress in mathematical reasoning. While data augmentation is promising to enhance mathematical problem-solving ability, current approaches are predominantly limited to instance-level modifications-such as rephrasing or generating syntactic variations-which fail to capture and leverage the intrinsic relational structures inherent in mathematical knowledge. Inspired by human learning processes, where mathematical proficiency develops through systematic exposure to interconnected concepts, we introduce MathFusion, a novel framework that enhances mathematical reasoning through cross-problem instruction synthesis. MathFusion implements this through three fusion strategies: (1) sequential fusion, which chains related problems to model solution dependencies; (2) parallel fusion, which combines analogous problems to reinforce conceptual understanding; and (3) conditional fusion, which creates context-aware selective problems to enhance reasoning flexibility. By applying these strategies, we generate a new dataset, MathFusionQA, followed by fine-tuning models (DeepSeekMath-7B, Mistral-7B, Llama3-8B) on it. Experimental results demonstrate that MathFusion achieves substantial improvements in mathematical reasoning while maintaining high data efficiency, boosting performance by 18.0 points in accuracy across diverse benchmarks while requiring only 45K additional synthetic instructions, representing a substantial improvement over traditional single-instruction approaches. Our datasets, models, and code are publicly available at https://github.com/QizhiPei/mathfusion.
We-Math 2.0: A Versatile MathBook System for Incentivizing Visual Mathematical Reasoning
Multimodal Large Language Models (MLLMs) have demonstrated impressive capabilities across various tasks, but still struggle with complex mathematical reasoning. Existing research primarily focuses on dataset construction and method optimization, often overlooking two critical aspects: comprehensive knowledge-driven design and model-centric data space modeling. In this paper, we introduce We-Math 2.0, a unified system that integrates a structured mathematical knowledge system, model-centric data space modeling, and a reinforcement learning (RL)-based training paradigm to comprehensively enhance the mathematical reasoning abilities of MLLMs. The key contributions of We-Math 2.0 are fourfold: (1) MathBook Knowledge System: We construct a five-level hierarchical system encompassing 491 knowledge points and 1,819 fundamental principles. (2) MathBook-Standard & Pro: We develop MathBook-Standard, a dataset that ensures broad conceptual coverage and flexibility through dual expansion. Additionally, we define a three-dimensional difficulty space and generate 7 progressive variants per problem to build MathBook-Pro, a challenging dataset for robust training. (3) MathBook-RL: We propose a two-stage RL framework comprising: (i) Cold-Start Fine-tuning, which aligns the model with knowledge-oriented chain-of-thought reasoning; and (ii) Progressive Alignment RL, leveraging average-reward learning and dynamic data scheduling to achieve progressive alignment across difficulty levels. (4) MathBookEval: We introduce a comprehensive benchmark covering all 491 knowledge points with diverse reasoning step distributions. Experimental results show that MathBook-RL performs competitively with existing baselines on four widely-used benchmarks and achieves strong results on MathBookEval, suggesting promising generalization in mathematical reasoning.
FIMO: A Challenge Formal Dataset for Automated Theorem Proving
We present FIMO, an innovative dataset comprising formal mathematical problem statements sourced from the International Mathematical Olympiad (IMO) Shortlisted Problems. Designed to facilitate advanced automated theorem proving at the IMO level, FIMO is currently tailored for the Lean formal language. It comprises 149 formal problem statements, accompanied by both informal problem descriptions and their corresponding LaTeX-based informal proofs. Through initial experiments involving GPT-4, our findings underscore the existing limitations in current methodologies, indicating a substantial journey ahead before achieving satisfactory IMO-level automated theorem proving outcomes.
Generalized Convolution and Efficient Language Recognition
Convolution is a broadly useful operation with applications including signal processing, machine learning, probability, optics, polynomial multiplication, and efficient parsing. Usually, however, this operation is understood and implemented in more specialized forms, hiding commonalities and limiting usefulness. This paper formulates convolution in the common algebraic framework of semirings and semimodules and populates that framework with various representation types. One of those types is the grand abstract template and itself generalizes to the free semimodule monad. Other representations serve varied uses and performance trade-offs, with implementations calculated from simple and regular specifications. Of particular interest is Brzozowski's method for regular expression matching. Uncovering the method's essence frees it from syntactic manipulations, while generalizing from boolean to weighted membership (such as multisets and probability distributions) and from sets to n-ary relations. The classic trie data structure then provides an elegant and efficient alternative to syntax. Pleasantly, polynomial arithmetic requires no additional implementation effort, works correctly with a variety of representations, and handles multivariate polynomials and power series with ease. Image convolution also falls out as a special case.
Generative Logic: A New Computer Architecture for Deterministic Reasoning and Knowledge Generation
We present Generative Logic (GL), a deterministic architecture that begins from user-supplied axiomatic definitions -- written in a minimalist Mathematical Programming Language (MPL) -- and systematically explores their deductive neighborhood. Definitions are compiled into a distributed grid of simple Logic Blocks (LBs) that exchange messages; any time several expressions unify under an inference rule, a new fact is emitted with full provenance to its sources, yielding replayable, auditable proof graphs. A prototype software implementation instantiates the workflow on first-order Peano arithmetic. Starting only from the Peano axioms, GL enumerates candidate implications, applies normalization and type filters, and automatically reconstructs machine-checkable proofs of foundational arithmetic laws including associativity and commutativity of addition, associativity and commutativity of multiplication, and distributivity. Generated proofs export to navigable HTML so that every inference step can be inspected independently. We outline a hardware-software co-design path toward massively parallel realizations and describe prospective integration with probabilistic models (e.g., Large Language Models (LLMs)) for autoformalization and conjecture seeding. The Python and MPL code to reproduce the Peano experiments, along with the full HTML proof graphs, are available in the project's GitHub repository at https://github.com/Generative-Logic/GL/tree/35a111ea9ba53afe051703d6050be0c3923e9724 and are permanently archived at https://doi.org/10.5281/zenodo.16408441. We invite community feedback and collaboration.
OpenMathInstruct-1: A 1.8 Million Math Instruction Tuning Dataset
Recent work has shown the immense potential of synthetically generated datasets for training large language models (LLMs), especially for acquiring targeted skills. Current large-scale math instruction tuning datasets such as MetaMathQA (Yu et al., 2024) and MAmmoTH (Yue et al., 2024) are constructed using outputs from closed-source LLMs with commercially restrictive licenses. A key reason limiting the use of open-source LLMs in these data generation pipelines has been the wide gap between the mathematical skills of the best closed-source LLMs, such as GPT-4, and the best open-source LLMs. Building on the recent progress in open-source LLMs, our proposed prompting novelty, and some brute-force scaling, we construct OpenMathInstruct-1, a math instruction tuning dataset with 1.8M problem-solution pairs. The dataset is constructed by synthesizing code-interpreter solutions for GSM8K and MATH, two popular math reasoning benchmarks, using the recently released and permissively licensed Mixtral model. Our best model, OpenMath-CodeLlama-70B, trained on a subset of OpenMathInstruct-1, achieves a score of 84.6% on GSM8K and 50.7% on MATH, which is competitive with the best gpt-distilled models. We release our code, models, and the OpenMathInstruct-1 dataset under a commercially permissive license.
Approximate Axiomatization for Differentially-Defined Functions
This article establishes a complete approximate axiomatization for the real-closed field R expanded with all differentially-defined functions, including special functions such as sin(x), cos(x), e^x, dots. Every true sentence is provable up to some numerical approximation, and the truth of such approximations converge under mild conditions. Such an axiomatization is a fragment of the axiomatization for differential dynamic logic, and is therefore a finite extension of the axiomatization of real-closed fields. Furthermore, the numerical approximations approximate formulas containing special function symbols by FOL_{R} formulas, improving upon earlier decidability results only concerning closed sentences.
Stochastic Process Learning via Operator Flow Matching
Expanding on neural operators, we propose a novel framework for stochastic process learning across arbitrary domains. In particular, we develop operator flow matching (OFM) for learning stochastic process priors on function spaces. OFM provides the probability density of the values of any collection of points and enables mathematically tractable functional regression at new points with mean and density estimation. Our method outperforms state-of-the-art models in stochastic process learning, functional regression, and prior learning.
Deep Sets
We study the problem of designing models for machine learning tasks defined on sets. In contrast to traditional approach of operating on fixed dimensional vectors, we consider objective functions defined on sets that are invariant to permutations. Such problems are widespread, ranging from estimation of population statistics poczos13aistats, to anomaly detection in piezometer data of embankment dams Jung15Exploration, to cosmology Ntampaka16Dynamical,Ravanbakhsh16ICML1. Our main theorem characterizes the permutation invariant functions and provides a family of functions to which any permutation invariant objective function must belong. This family of functions has a special structure which enables us to design a deep network architecture that can operate on sets and which can be deployed on a variety of scenarios including both unsupervised and supervised learning tasks. We also derive the necessary and sufficient conditions for permutation equivariance in deep models. We demonstrate the applicability of our method on population statistic estimation, point cloud classification, set expansion, and outlier detection.
Tutte's theorem as an educational formalization project
In this work, we present two results: The first result is the formalization of Tutte's theorem in Lean, a key theorem concerning matchings in graph theory. As this formalization is ready to be integrated in Lean's mathlib, it provides a valuable step in the path towards formalizing research-level mathematics in this area. The second result is a framework for doing educational formalization projects. This framework provides a structure to learn to formalize mathematics with minimal teacher input. This framework applies to both traditional academic settings and independent community-driven environments. We demonstrate the framework's use by connecting it to the process of formalizing Tutte's theorem.
Neural Inverse Operators for Solving PDE Inverse Problems
A large class of inverse problems for PDEs are only well-defined as mappings from operators to functions. Existing operator learning frameworks map functions to functions and need to be modified to learn inverse maps from data. We propose a novel architecture termed Neural Inverse Operators (NIOs) to solve these PDE inverse problems. Motivated by the underlying mathematical structure, NIO is based on a suitable composition of DeepONets and FNOs to approximate mappings from operators to functions. A variety of experiments are presented to demonstrate that NIOs significantly outperform baselines and solve PDE inverse problems robustly, accurately and are several orders of magnitude faster than existing direct and PDE-constrained optimization methods.
MathCoder: Seamless Code Integration in LLMs for Enhanced Mathematical Reasoning
The recently released GPT-4 Code Interpreter has demonstrated remarkable proficiency in solving challenging math problems, primarily attributed to its ability to seamlessly reason with natural language, generate code, execute code, and continue reasoning based on the execution output. In this paper, we present a method to fine-tune open-source language models, enabling them to use code for modeling and deriving math equations and, consequently, enhancing their mathematical reasoning abilities. We propose a method of generating novel and high-quality datasets with math problems and their code-based solutions, referred to as MathCodeInstruct. Each solution interleaves natural language, code, and execution results. We also introduce a customized supervised fine-tuning and inference approach. This approach yields the MathCoder models, a family of models capable of generating code-based solutions for solving challenging math problems. Impressively, the MathCoder models achieve state-of-the-art scores among open-source LLMs on the MATH (45.2%) and GSM8K (83.9%) datasets, substantially outperforming other open-source alternatives. Notably, the MathCoder model not only surpasses ChatGPT-3.5 and PaLM-2 on GSM8K and MATH but also outperforms GPT-4 on the competition-level MATH dataset. The dataset and models will be released at https://github.com/mathllm/MathCoder.
Nemotron-CC-Math: A 133 Billion-Token-Scale High Quality Math Pretraining Dataset
Pretraining large language models (LLMs) on high-quality, structured data such as mathematics and code substantially enhances reasoning capabilities. However, existing math-focused datasets built from Common Crawl suffer from degraded quality due to brittle extraction heuristics, lossy HTML-to-text conversion, and the failure to reliably preserve mathematical structure. In this work, we introduce Nemotron-CC-Math, a large-scale, high-quality mathematical corpus constructed from Common Crawl using a novel, domain-agnostic pipeline specifically designed for robust scientific text extraction. Unlike previous efforts, our pipeline recovers math across various formats (e.g., MathJax, KaTeX, MathML) by leveraging layout-aware rendering with lynx and a targeted LLM-based cleaning stage. This approach preserves the structural integrity of equations and code blocks while removing boilerplate, standardizing notation into LaTeX representation, and correcting inconsistencies. We collected a large, high-quality math corpus, namely Nemotron-CC-Math-3+ (133B tokens) and Nemotron-CC-Math-4+ (52B tokens). Notably, Nemotron-CC-Math-4+ not only surpasses all prior open math datasets-including MegaMath, FineMath, and OpenWebMath-but also contains 5.5 times more tokens than FineMath-4+, which was previously the highest-quality math pretraining dataset. When used to pretrain a Nemotron-T 8B model, our corpus yields +4.8 to +12.6 gains on MATH and +4.6 to +14.3 gains on MBPP+ over strong baselines, while also improving general-domain performance on MMLU and MMLU-Stem. We present the first pipeline to reliably extract scientific content--including math--from noisy web-scale data, yielding measurable gains in math, code, and general reasoning, and setting a new state of the art among open math pretraining corpora. To support open-source efforts, we release our code and datasets.
A Convenient Category for Higher-Order Probability Theory
Higher-order probabilistic programming languages allow programmers to write sophisticated models in machine learning and statistics in a succinct and structured way, but step outside the standard measure-theoretic formalization of probability theory. Programs may use both higher-order functions and continuous distributions, or even define a probability distribution on functions. But standard probability theory does not handle higher-order functions well: the category of measurable spaces is not cartesian closed. Here we introduce quasi-Borel spaces. We show that these spaces: form a new formalization of probability theory replacing measurable spaces; form a cartesian closed category and so support higher-order functions; form a well-pointed category and so support good proof principles for equational reasoning; and support continuous probability distributions. We demonstrate the use of quasi-Borel spaces for higher-order functions and probability by: showing that a well-known construction of probability theory involving random functions gains a cleaner expression; and generalizing de Finetti's theorem, that is a crucial theorem in probability theory, to quasi-Borel spaces.
MegaMath: Pushing the Limits of Open Math Corpora
Mathematical reasoning is a cornerstone of human intelligence and a key benchmark for advanced capabilities in large language models (LLMs). However, the research community still lacks an open, large-scale, high-quality corpus tailored to the demands of math-centric LLM pre-training. We present MegaMath, an open dataset curated from diverse, math-focused sources through following practices: (1) Revisiting web data: We re-extracted mathematical documents from Common Crawl with math-oriented HTML optimizations, fasttext-based filtering and deduplication, all for acquiring higher-quality data on the Internet. (2) Recalling Math-related code data: We identified high quality math-related code from large code training corpus, Stack-V2, further enhancing data diversity. (3) Exploring Synthetic data: We synthesized QA-style text, math-related code, and interleaved text-code blocks from web data or code data. By integrating these strategies and validating their effectiveness through extensive ablations, MegaMath delivers 371B tokens with the largest quantity and top quality among existing open math pre-training datasets.
AIMO-2 Winning Solution: Building State-of-the-Art Mathematical Reasoning Models with OpenMathReasoning dataset
This paper presents our winning submission to the AI Mathematical Olympiad - Progress Prize 2 (AIMO-2) competition. Our recipe for building state-of-the-art mathematical reasoning models relies on three key pillars. First, we create a large-scale dataset comprising 540K unique high-quality math problems, including olympiad-level problems, and their 3.2M long-reasoning solutions. Second, we develop a novel method to integrate code execution with long reasoning models through iterative training, generation, and quality filtering, resulting in 1.7M high-quality Tool-Integrated Reasoning solutions. Third, we create a pipeline to train models to select the most promising solution from many candidates. We show that such generative solution selection (GenSelect) can significantly improve upon majority voting baseline. Combining these ideas, we train a series of models that achieve state-of-the-art results on mathematical reasoning benchmarks. To facilitate further research, we release our code, models, and the complete OpenMathReasoning dataset under a commercially permissive license.
MAMUT: A Novel Framework for Modifying Mathematical Formulas for the Generation of Specialized Datasets for Language Model Training
Mathematical formulas are a fundamental and widely used component in various scientific fields, serving as a universal language for expressing complex concepts and relationships. While state-of-the-art transformer models excel in processing and understanding natural language, they encounter challenges with mathematical notation, which involves a complex structure and diverse representations. This study focuses on the development of specialized training datasets to enhance the encoding of mathematical content. We introduce Math Mutator (MAMUT), a framework capable of generating equivalent and falsified versions of a given mathematical formula in LaTeX notation, effectively capturing the mathematical variety in notation of the same concept. Based on MAMUT, we have generated four large mathematical datasets containing diverse notation, which can be used to train language models with enhanced mathematical embeddings.
MiniF2F: a cross-system benchmark for formal Olympiad-level mathematics
We present miniF2F, a dataset of formal Olympiad-level mathematics problems statements intended to provide a unified cross-system benchmark for neural theorem proving. The miniF2F benchmark currently targets Metamath, Lean, Isabelle (partially) and HOL Light (partially) and consists of 488 problem statements drawn from the AIME, AMC, and the International Mathematical Olympiad (IMO), as well as material from high-school and undergraduate mathematics courses. We report baseline results using GPT-f, a neural theorem prover based on GPT-3 and provide an analysis of its performance. We intend for miniF2F to be a community-driven effort and hope that our benchmark will help spur advances in neural theorem proving.
InfinityMATH: A Scalable Instruction Tuning Dataset in Programmatic Mathematical Reasoning
Recent advancements in Chain-of-Thoughts (CoT) and Program-of-Thoughts (PoT) methods have greatly enhanced language models' mathematical reasoning capabilities, facilitating their integration into instruction tuning datasets with LLMs. However, existing methods for large-scale dataset creation require substantial seed data and high computational costs for data synthesis, posing significant challenges for scalability. We introduce InfinityMATH, a scalable instruction tuning dataset for programmatic mathematical reasoning. The construction pipeline emphasizes decoupling numbers from mathematical problems to synthesize number-independent programs, enabling efficient and flexible scaling while minimizing dependency on specific numerical values. Fine-tuning experiments with open-source language and code models, such as Llama2 and CodeLlama, demonstrate the practical benefits of InfinityMATH. These fine-tuned models, showed significant relative improvements on both in-domain and out-of-domain benchmarks, ranging from 184.7% to 514.3% on average. Additionally, these models exhibited high robustness on the GSM8K+ and MATH+ benchmarks, which are enhanced version of test sets with simply the number variations. InfinityMATH ensures that models are more versatile and effective across a broader range of mathematical problems. The data is available at https://huggingface.co/datasets/flagopen/InfinityMATH.
Categorical Stochastic Processes and Likelihood
In this work we take a Category Theoretic perspective on the relationship between probabilistic modeling and function approximation. We begin by defining two extensions of function composition to stochastic process subordination: one based on the co-Kleisli category under the comonad (Omega x -) and one based on the parameterization of a category with a Lawvere theory. We show how these extensions relate to the category Stoch and other Markov Categories. Next, we apply the Para construction to extend stochastic processes to parameterized statistical models and we define a way to compose the likelihood functions of these models. We conclude with a demonstration of how the Maximum Likelihood Estimation procedure defines an identity-on-objects functor from the category of statistical models to the category of Learners. Code to accompany this paper can be found at https://github.com/dshieble/Categorical_Stochastic_Processes_and_Likelihood
Target-based Surrogates for Stochastic Optimization
We consider minimizing functions for which it is expensive to compute the (possibly stochastic) gradient. Such functions are prevalent in reinforcement learning, imitation learning and adversarial training. Our target optimization framework uses the (expensive) gradient computation to construct surrogate functions in a target space (e.g. the logits output by a linear model for classification) that can be minimized efficiently. This allows for multiple parameter updates to the model, amortizing the cost of gradient computation. In the full-batch setting, we prove that our surrogate is a global upper-bound on the loss, and can be (locally) minimized using a black-box optimization algorithm. We prove that the resulting majorization-minimization algorithm ensures convergence to a stationary point of the loss. Next, we instantiate our framework in the stochastic setting and propose the SSO algorithm, which can be viewed as projected stochastic gradient descent in the target space. This connection enables us to prove theoretical guarantees for SSO when minimizing convex functions. Our framework allows the use of standard stochastic optimization algorithms to construct surrogates which can be minimized by any deterministic optimization method. To evaluate our framework, we consider a suite of supervised learning and imitation learning problems. Our experiments indicate the benefits of target optimization and the effectiveness of SSO.
FunReason: Enhancing Large Language Models' Function Calling via Self-Refinement Multiscale Loss and Automated Data Refinement
The integration of large language models (LLMs) with function calling has emerged as a crucial capability for enhancing their practical utility in real-world applications. However, effectively combining reasoning processes with accurate function execution remains a significant challenge. Traditional training approaches often struggle to balance the detailed reasoning steps with the precision of function calls, leading to suboptimal performance. To address these limitations, we introduce FunReason, a novel framework that enhances LLMs' function calling capabilities through an automated data refinement strategy and a Self-Refinement Multiscale Loss (SRML) approach. FunReason leverages LLMs' natural reasoning abilities to generate high-quality training examples, focusing on query parseability, reasoning coherence, and function call precision. The SRML approach dynamically balances the contribution of reasoning processes and function call accuracy during training, addressing the inherent trade-off between these two critical aspects. FunReason achieves performance comparable to GPT-4o while effectively mitigating catastrophic forgetting during fine-tuning. FunReason provides a comprehensive solution for enhancing LLMs' function calling capabilities by introducing a balanced training methodology and a data refinement pipeline. For code and dataset, please refer to our repository at GitHub https://github.com/BingguangHao/FunReason
Automated Search for Conjectures on Mathematical Constants using Analysis of Integer Sequences
Formulas involving fundamental mathematical constants had a great impact on various fields of science and mathematics, for example aiding in proofs of irrationality of constants. However, the discovery of such formulas has historically remained scarce, often perceived as an act of mathematical genius by great mathematicians such as Ramanujan, Euler, and Gauss. Recent efforts to automate the discovery of formulas for mathematical constants, such as the Ramanujan Machine project, relied on exhaustive search. Despite several successful discoveries, exhaustive search remains limited by the space of options that can be covered and by the need for vast amounts of computational resources. Here we propose a fundamentally different method to search for conjectures on mathematical constants: through analysis of integer sequences. We introduce the Enumerated Signed-continued-fraction Massey Approve (ESMA) algorithm, which builds on the Berlekamp-Massey algorithm to identify patterns in integer sequences that represent mathematical constants. The ESMA algorithm found various known formulas for e, e^2, tan(1), and ratios of values of Bessel functions. The algorithm further discovered a large number of new conjectures for these constants, some providing simpler representations and some providing faster numerical convergence than the corresponding simple continued fractions. Along with the algorithm, we present mathematical tools for manipulating continued fractions. These connections enable us to characterize what space of constants can be found by ESMA and quantify its algorithmic advantage in certain scenarios. Altogether, this work continues in the development of augmenting mathematical intuition by computer algorithms, to help reveal mathematical structures and accelerate mathematical research.
Eliciting Instruction-tuned Code Language Models' Capabilities to Utilize Auxiliary Function for Code Generation
We study the code generation behavior of instruction-tuned models built on top of code pre-trained language models when they could access an auxiliary function to implement a function. We design several ways to provide auxiliary functions to the models by adding them to the query or providing a response prefix to incorporate the ability to utilize auxiliary functions with the instruction-following capability. Our experimental results show the effectiveness of combining the base models' auxiliary function utilization ability with the instruction following ability. In particular, the performance of adopting our approaches with the open-sourced language models surpasses that of the recent powerful proprietary language models, i.e., gpt-4o.
OptiMind: Teaching LLMs to Think Like Optimization Experts
Mathematical programming -- the task of expressing operations and decision-making problems in precise mathematical language -- is fundamental across domains, yet remains a skill-intensive process requiring operations research expertise. Recent advances in large language models for complex reasoning have spurred interest in automating this task, translating natural language into executable optimization models. Current approaches, however, achieve limited accuracy, hindered by scarce and noisy training data without leveraging domain knowledge. In this work, we systematically integrate optimization expertise to improve formulation accuracy for mixed-integer linear programming, a key family of mathematical programs. Our approach first cleans training data through class-based error analysis to explicitly prevent common mistakes within each optimization class. We then develop multi-turn inference strategies that guide LLMs with class-specific error summaries and solver feedback, enabling iterative refinement. Experiments across multiple base LLMs demonstrate that combining cleaned data with domain-informed prompting and feedback improves formulation accuracy by 14 percentage points on average, enabling further progress toward robust LLM-assisted optimization formulation.
Denotational validation of higher-order Bayesian inference
We present a modular semantic account of Bayesian inference algorithms for probabilistic programming languages, as used in data science and machine learning. Sophisticated inference algorithms are often explained in terms of composition of smaller parts. However, neither their theoretical justification nor their implementation reflects this modularity. We show how to conceptualise and analyse such inference algorithms as manipulating intermediate representations of probabilistic programs using higher-order functions and inductive types, and their denotational semantics. Semantic accounts of continuous distributions use measurable spaces. However, our use of higher-order functions presents a substantial technical difficulty: it is impossible to define a measurable space structure over the collection of measurable functions between arbitrary measurable spaces that is compatible with standard operations on those functions, such as function application. We overcome this difficulty using quasi-Borel spaces, a recently proposed mathematical structure that supports both function spaces and continuous distributions. We define a class of semantic structures for representing probabilistic programs, and semantic validity criteria for transformations of these representations in terms of distribution preservation. We develop a collection of building blocks for composing representations. We use these building blocks to validate common inference algorithms such as Sequential Monte Carlo and Markov Chain Monte Carlo. To emphasize the connection between the semantic manipulation and its traditional measure theoretic origins, we use Kock's synthetic measure theory. We demonstrate its usefulness by proving a quasi-Borel counterpart to the Metropolis-Hastings-Green theorem.
MathOPEval: A Fine-grained Evaluation Benchmark for Visual Operations of MLLMs in Mathematical Reasoning
Recent progress in Multi-modal Large Language Models (MLLMs) has enabled step-by-step multi-modal mathematical reasoning by performing visual operations based on the textual instructions. A promising approach uses code as an intermediate representation to precisely express and manipulate the images in the reasoning steps. However, existing evaluations focus mainly on text-only reasoning outputs, leaving the MLLM's ability to perform accurate visual operations via code largely unexplored. This work takes a first step toward addressing that gap by evaluating MLLM's code-based capabilities in multi-modal mathematical reasoning.Specifically, our framework focuses on two key evaluation aspects: (1) Multi-modal Code Generation (MCG) evaluates the model's ability to accurately understand and construct visualizations from scratch. (2) Multi-modal Code Editing (MCE) assesses the model's capacity for fine-grained operations, which include three types: Deletion, Modification and Annotation. To evaluate the above tasks, we incorporate a dataset that covers the five most popular types of mathematical figures, including geometric diagrams, function plots, and three types of statistical charts, to provide a comprehensive and effective measurement of existing MLLMs. Our experimental evaluation involves nine mainstream MLLMs, and the results reveal that existing models still lag significantly behind human performance in performing fine-grained visual operations.
Executable Functional Abstractions: Inferring Generative Programs for Advanced Math Problems
Scientists often infer abstract procedures from specific instances of problems and use the abstractions to generate new, related instances. For example, programs encoding the formal rules and properties of a system have been useful in fields ranging from RL (procedural environments) to physics (simulation engines). These programs can be seen as functions which execute to different outputs based on their parameterizations (e.g., gridworld configuration or initial physical conditions). We introduce the term EFA (Executable Functional Abstraction) to denote such programs for math problems. EFA-like constructs have been shown to be useful for math reasoning as problem generators for stress-testing models. However, prior work has been limited to abstractions for grade-school math (whose simple rules are easy to encode in programs), while generating EFAs for advanced math has thus far required human engineering. We explore the automatic construction of EFAs for advanced math problems. We operationalize the task of automatically constructing EFAs as a program synthesis task, and develop EFAGen, which conditions an LLM on a seed math problem and its step-by-step solution to generate candidate EFA programs that are faithful to the generalized problem and solution class underlying the seed problem. Furthermore, we formalize properties any valid EFA must possess in terms of executable unit tests, and show how the tests can be used as verifiable rewards to train LLMs to become better writers of EFAs. We demonstrate that EFAs constructed by EFAGen behave rationally by remaining faithful to seed problems, produce learnable problem variations, and that EFAGen can infer EFAs across multiple diverse sources of competition-level math problems. Finally, we show downstream uses of model-written EFAs e.g. finding problem variations that are harder or easier for a learner to solve, as well as data generation.
APE-Bench I: Towards File-level Automated Proof Engineering of Formal Math Libraries
Recent progress in large language models (LLMs) has shown promise in formal theorem proving, yet existing benchmarks remain limited to isolated, static proof tasks, failing to capture the iterative, engineering-intensive workflows of real-world formal mathematics libraries. Motivated by analogous advances in software engineering, we introduce the paradigm of Automated Proof Engineering (APE), which aims to automate proof engineering tasks such as feature addition, proof refactoring, and bug fixing using LLMs. To facilitate research in this direction, we present APE-Bench I, the first realistic benchmark built from real-world commit histories of Mathlib4, featuring diverse file-level tasks described in natural language and verified via a hybrid approach combining the Lean compiler and LLM-as-a-Judge. We further develop Eleanstic, a scalable parallel verification infrastructure optimized for proof checking across multiple versions of Mathlib. Empirical results on state-of-the-art LLMs demonstrate strong performance on localized edits but substantial degradation on handling complex proof engineering. This work lays the foundation for developing agentic workflows in proof engineering, with future benchmarks targeting multi-file coordination, project-scale verification, and autonomous agents capable of planning, editing, and repairing formal libraries.
ComplexFuncBench: Exploring Multi-Step and Constrained Function Calling under Long-Context Scenario
Enhancing large language models (LLMs) with real-time APIs can help generate more accurate and up-to-date responses. However, evaluating the function calling abilities of LLMs in real-world scenarios remains under-explored due to the complexity of data collection and evaluation. In this work, we introduce ComplexFuncBench, a benchmark for complex function calling across five real-world scenarios. Compared to existing benchmarks, ComplexFuncBench encompasses multi-step and constrained function calling, which requires long-parameter filing, parameter value reasoning, and 128k long context. Additionally, we propose an automatic framework, ComplexEval, for quantitatively evaluating complex function calling tasks. Through comprehensive experiments, we demonstrate the deficiencies of state-of-the-art LLMs in function calling and suggest future directions for optimizing these capabilities. The data and code are available at https://github.com/THUDM/ComplexFuncBench.
Using Rewrite Strategies for Efficient Functional Automatic Differentiation
Automatic Differentiation (AD) has become a dominant technique in ML. AD frameworks have first been implemented for imperative languages using tapes. Meanwhile, functional implementations of AD have been developed, often based on dual numbers, which are close to the formal specification of differentiation and hence easier to prove correct. But these papers have focussed on correctness not efficiency. Recently, it was shown how an approach using dual numbers could be made efficient through the right optimizations. Optimizations are highly dependent on order, as one optimization can enable another. It can therefore be useful to have fine-grained control over the scheduling of optimizations. One method expresses compiler optimizations as rewrite rules, whose application can be combined and controlled using strategy languages. Previous work describes the use of term rewriting and strategies to generate high-performance code in a compiler for a functional language. In this work, we implement dual numbers AD in a functional array programming language using rewrite rules and strategy combinators for optimization. We aim to combine the elegance of differentiation using dual numbers with a succinct expression of the optimization schedule using a strategy language. We give preliminary evidence suggesting the viability of the approach on a micro-benchmark.
Granite-Function Calling Model: Introducing Function Calling Abilities via Multi-task Learning of Granular Tasks
Large language models (LLMs) have recently shown tremendous promise in serving as the backbone to agentic systems, as demonstrated by their performance in multi-faceted, challenging benchmarks like SWE-Bench and Agent-Bench. However, to realize the true potential of LLMs as autonomous agents, they must learn to identify, call, and interact with external tools and application program interfaces (APIs) to complete complex tasks. These tasks together are termed function calling. Endowing LLMs with function calling abilities leads to a myriad of advantages, such as access to current and domain-specific information in databases and knowledge sources, and the ability to outsource tasks that can be reliably performed by tools, e.g., a Python interpreter or calculator. While there has been significant progress in function calling with LLMs, there is still a dearth of open models that perform on par with proprietary LLMs like GPT, Claude, and Gemini. Therefore, in this work, we introduce the GRANITE-20B-FUNCTIONCALLING model under an Apache 2.0 license. The model is trained using a multi-task training approach on seven fundamental tasks encompassed in function calling, those being Nested Function Calling, Function Chaining, Parallel Functions, Function Name Detection, Parameter-Value Pair Detection, Next-Best Function, and Response Generation. We present a comprehensive evaluation on multiple out-of-domain datasets comparing GRANITE-20B-FUNCTIONCALLING to more than 15 other best proprietary and open models. GRANITE-20B-FUNCTIONCALLING provides the best performance among all open models on the Berkeley Function Calling Leaderboard and fourth overall. As a result of the diverse tasks and datasets used for training our model, we show that GRANITE-20B-FUNCTIONCALLING has better generalizability on multiple tasks in seven different evaluation datasets.
APTx: better activation function than MISH, SWISH, and ReLU's variants used in deep learning
Activation Functions introduce non-linearity in the deep neural networks. This nonlinearity helps the neural networks learn faster and efficiently from the dataset. In deep learning, many activation functions are developed and used based on the type of problem statement. ReLU's variants, SWISH, and MISH are goto activation functions. MISH function is considered having similar or even better performance than SWISH, and much better than ReLU. In this paper, we propose an activation function named APTx which behaves similar to MISH, but requires lesser mathematical operations to compute. The lesser computational requirements of APTx does speed up the model training, and thus also reduces the hardware requirement for the deep learning model. Source code: https://github.com/mr-ravin/aptx_activation
MathScale: Scaling Instruction Tuning for Mathematical Reasoning
Large language models (LLMs) have demonstrated remarkable capabilities in problem-solving. However, their proficiency in solving mathematical problems remains inadequate. We propose MathScale, a simple and scalable method to create high-quality mathematical reasoning data using frontier LLMs (e.g., {\tt GPT-3.5}). Inspired by the cognitive mechanism in human mathematical learning, it first extracts topics and knowledge points from seed math questions and then build a concept graph, which is subsequently used to generate new math questions. MathScale exhibits effective scalability along the size axis of the math dataset that we generate. As a result, we create a mathematical reasoning dataset (MathScaleQA) containing two million math question-answer pairs. To evaluate mathematical reasoning abilities of LLMs comprehensively, we construct {\sc MwpBench}, a benchmark of Math Word Problems, which is a collection of ten datasets (including GSM8K and MATH) covering K-12, college, and competition level math problems. We apply MathScaleQA to fine-tune open-source LLMs (e.g., LLaMA-2 and Mistral), resulting in significantly improved capabilities in mathematical reasoning. Evaluated on {\sc MwpBench}, MathScale-7B achieves state-of-the-art performance across all datasets, surpassing its best peers of equivalent size by 42.9\% in micro average accuracy and 43.7\% in macro average accuracy, respectively.
Generative AI for Math: Part I -- MathPile: A Billion-Token-Scale Pretraining Corpus for Math
High-quality, large-scale corpora are the cornerstone of building foundation models. In this work, we introduce MathPile, a diverse and high-quality math-centric corpus comprising about 9.5 billion tokens. Throughout its creation, we adhered to the principle of ``less is more'', firmly believing in the supremacy of data quality over quantity, even in the pre-training phase. Our meticulous data collection and processing efforts included a complex suite of preprocessing, prefiltering, language identification, cleaning, filtering, and deduplication, ensuring the high quality of our corpus. Furthermore, we performed data contamination detection on downstream benchmark test sets to eliminate duplicates. We hope our MathPile can help to enhance the mathematical reasoning abilities of language models. We plan to open-source different versions of \mathpile with the scripts used for processing, to facilitate future developments in this field.
The Syntax and Semantics of einsum
In 2011, einsum was introduced to NumPy as a practical and convenient notation for tensor expressions in machine learning, quantum circuit simulation, and other fields. It has since been implemented in additional Python frameworks such as PyTorch and TensorFlow, as well as in other programming languages such as Julia. Despite its practical success, the einsum notation still lacks a solid theoretical basis, and is not unified across the different frameworks, limiting opportunities for formal reasoning and systematic optimization. In this work, we discuss the terminology of tensor expressions and provide a formal definition of the einsum language. Based on this definition, we formalize and prove important equivalence rules for tensor expressions and highlight their relevance in practical applications.
Assisting Mathematical Formalization with A Learning-based Premise Retriever
Premise selection is a crucial yet challenging step in mathematical formalization, especially for users with limited experience. Due to the lack of available formalization projects, existing approaches that leverage language models often suffer from data scarcity. In this work, we introduce an innovative method for training a premise retriever to support the formalization of mathematics. Our approach employs a BERT model to embed proof states and premises into a shared latent space. The retrieval model is trained within a contrastive learning framework and incorporates a domain-specific tokenizer along with a fine-grained similarity computation method. Experimental results show that our model is highly competitive compared to existing baselines, achieving strong performance while requiring fewer computational resources. Performance is further enhanced through the integration of a re-ranking module. To streamline the formalization process, we will release a search engine that enables users to query Mathlib theorems directly using proof states, significantly improving accessibility and efficiency. Codes are available at https://github.com/ruc-ai4math/Premise-Retrieval.
A projection-based framework for gradient-free and parallel learning
We present a feasibility-seeking approach to neural network training. This mathematical optimization framework is distinct from conventional gradient-based loss minimization and uses projection operators and iterative projection algorithms. We reformulate training as a large-scale feasibility problem: finding network parameters and states that satisfy local constraints derived from its elementary operations. Training then involves projecting onto these constraints, a local operation that can be parallelized across the network. We introduce PJAX, a JAX-based software framework that enables this paradigm. PJAX composes projection operators for elementary operations, automatically deriving the solution operators for the feasibility problems (akin to autodiff for derivatives). It inherently supports GPU/TPU acceleration, provides a familiar NumPy-like API, and is extensible. We train diverse architectures (MLPs, CNNs, RNNs) on standard benchmarks using PJAX, demonstrating its functionality and generality. Our results show that this approach is as a compelling alternative to gradient-based training, with clear advantages in parallelism and the ability to handle non-differentiable operations.
CodePlot-CoT: Mathematical Visual Reasoning by Thinking with Code-Driven Images
Recent advances in Large Language Models (LLMs) and Vision Language Models (VLMs) have shown significant progress in mathematical reasoning, yet they still face a critical bottleneck with problems requiring visual assistance, such as drawing auxiliary lines or plotting functions to solve the problems. Most LLMs and VLMs are constrained to text-only reasoning chains, while multimodal unified models that can generate interleaved text and images lack the necessary precision and controllability for such tasks. To address this, we propose CodePlot-CoT, a code-driven Chain-of-Thought paradigm for "thinking with images" in mathematics. Our approach leverages the VLM to generate text reasoning as well as executable plotting code, which is then rendered into images as "visual thought", to solve mathematical problems. To achieve this, we first construct Math-VR, the first large-scale, bilingual dataset and benchmark for Mathematics problems with Visual Reasoning, comprising 178K samples. Second, to create high-quality training data, we develop a state-of-the-art image-to-code converter specialized for parsing complex mathematical figures into codes. Finally, using these training data, we train the CodePlot-CoT model for solving mathematical problems. Experimental results show that our model achieves up to 21% increase over base model on our new benchmark, fully validating the efficacy of our proposed code-driven reasoning paradigm. Our work opens a new direction for multimodal mathematical reasoning and provides the community with the first large-scale dataset, comprehensive benchmark, and strong approach for such problems. To facilitate future research, we make our datasets, code, and pretrained models publicly available at https://github.com/HKU-MMLab/Math-VR-CodePlot-CoT.
MathVerse: Does Your Multi-modal LLM Truly See the Diagrams in Visual Math Problems?
The remarkable progress of Multi-modal Large Language Models (MLLMs) has garnered unparalleled attention, due to their superior performance in visual contexts. However, their capabilities in visual math problem-solving remain insufficiently evaluated and understood. We investigate current benchmarks to incorporate excessive visual content within textual questions, which potentially assist MLLMs in deducing answers without truly interpreting the input diagrams. To this end, we introduce MathVerse, an all-around visual math benchmark designed for an equitable and in-depth evaluation of MLLMs. We meticulously collect 2,612 high-quality, multi-subject math problems with diagrams from publicly available sources. Each problem is then transformed by human annotators into six distinct versions, each offering varying degrees of information content in multi-modality, contributing to 15K test samples in total. This approach allows MathVerse to comprehensively assess whether and how much MLLMs can truly understand the visual diagrams for mathematical reasoning. In addition, we propose a Chain-of-Thought (CoT) evaluation strategy for a fine-grained assessment of the output answers. Rather than naively judging True or False, we employ GPT-4(V) to adaptively extract crucial reasoning steps, and then score each step with detailed error analysis, which can reveal the intermediate CoT reasoning quality by MLLMs. We hope the MathVerse benchmark may provide unique insights to guide the future development of MLLMs. Project page: https://mathverse-cuhk.github.io
Towards Advanced Mathematical Reasoning for LLMs via First-Order Logic Theorem Proving
Large language models (LLMs) have shown promising first-order logic (FOL) reasoning capabilities with applications in various areas. However, their effectiveness in complex mathematical reasoning involving multi-step FOL deductions is still under-researched. While LLMs perform competitively on established mathematical reasoning benchmarks, they struggle with multi-step FOL tasks, as demonstrated by Deepseek-Prover-V2-7B's low accuracy (4.2%) on our proposed theorem proving dataset. This issue arises from the limited exploration of diverse proof strategies and the potential for early reasoning mistakes to undermine entire proofs. To address these issues, we propose DREAM, a self-adaptive solution that enhances the Diversity and REAsonability of LLMs' generation strategies. DREAM incorporates an Axiom-Driven Strategy Diversification mechanism to promote varied strategic outcomes and a Sub-Proposition Error Feedback to help LLMs reflect on and correct their proofs. Our contributions include pioneering advancements in LLMs' mathematical reasoning through FOL theorem proving, introducing a novel inference stage solution that improves performance by 0.6% to 6.4%, and providing a curated dataset of 447 mathematical theorems in Lean 4 format for evaluation.
DisCoPy: the Hierarchy of Graphical Languages in Python
DisCoPy is a Python toolkit for computing with monoidal categories. It comes with two flexible data structures for string diagrams: the first one for planar monoidal categories based on lists of layers, the second one for symmetric monoidal categories based on cospans of hypergraphs. Algorithms for functor application then allow to translate string diagrams into code for numerical computation, be it differentiable, probabilistic or quantum. This report gives an overview of the library and the new developments released in its version 1.0. In particular, we showcase the implementation of diagram equality for a large fragment of the hierarchy of graphical languages for monoidal categories, as well as a new syntax for defining string diagrams as Python functions.
An LLM Compiler for Parallel Function Calling
Large Language Models (LLMs) have shown remarkable results on various complex reasoning benchmarks. The reasoning capabilities of LLMs enable them to execute function calls, using user-provided functions to overcome their inherent limitations, such as knowledge cutoffs, poor arithmetic skills, or lack of access to private data. This development has expanded LLMs' scope to include multi-function calling, where LLMs are equipped with a variety of functions and select the proper functions based on the context. Multi-function calling abilities of LLMs have catalyzed LLM-based software development, allowing them to tackle more complex problems. However, current methods for multi-function calling often require sequential reasoning and acting for each function which can result in high latency, cost, and sometimes inaccurate behavior. To address this, we introduce LLMCompiler, which executes functions in parallel to efficiently orchestrate multi-function calling. Drawing from the principles of classical compilers, LLMCompiler streamlines parallel function calling with three components: (i) an LLM Planner, formulating execution strategies and dependencies; (ii) a Task Fetching Unit, dispatching function calling tasks; and (iii) an Executor, executing these tasks in parallel. LLMCompiler automatically computes an optimized orchestration for the function calls and can be used with open-source models such as LLaMA-2. We have benchmarked LLMCompiler on a range of tasks including cases with non-trivial inter-dependency between function calls, as well as cases that require dynamic replanning based on intermediate results. We observe consistent latency speedup of up to 3.7x, cost savings of up to 6.7x, and accuracy improvement of up to ~9% as compared to ReAct. Additionally, LLMCompiler achieves up to 1.35x latency gain over OpenAI's recent parallel function calling, while achieving similar accuracy.
Divide-and-Conquer Meets Consensus: Unleashing the Power of Functions in Code Generation
Despite recent progress made by large language models in code generation, they still struggle with programs that meet complex requirements. Recent work utilizes plan-and-solve decomposition to decrease the complexity and leverage self-tests to refine the generated program. Yet, planning deep-inside requirements in advance can be challenging, and the tests need to be accurate to accomplish self-improvement. To this end, we propose FunCoder, a code generation framework incorporating the divide-and-conquer strategy with functional consensus. Specifically, FunCoder recursively branches off sub-functions as smaller goals during code generation, represented by a tree hierarchy. These sub-functions are then composited to attain more complex objectives. Additionally, we designate functions via a consensus formed by identifying similarities in program behavior, mitigating error propagation. FunCoder outperforms state-of-the-art methods by +9.8% on average in HumanEval, MBPP, xCodeEval and MATH with GPT-3.5 and GPT-4. Moreover, our method demonstrates superiority on smaller models: With FunCoder, StableCode-3b surpasses GPT-3.5 by +18.6% and achieves 97.7% of GPT-4's performance on HumanEval. Further analysis reveals that our proposed dynamic function decomposition is capable of handling complex requirements, and the functional consensus prevails over self-testing in correctness evaluation.
MathBench: Evaluating the Theory and Application Proficiency of LLMs with a Hierarchical Mathematics Benchmark
Recent advancements in large language models (LLMs) have showcased significant improvements in mathematics. However, traditional math benchmarks like GSM8k offer a unidimensional perspective, falling short in providing a holistic assessment of the LLMs' math capabilities. To address this gap, we introduce MathBench, a new benchmark that rigorously assesses the mathematical capabilities of large language models. MathBench spans a wide range of mathematical disciplines, offering a detailed evaluation of both theoretical understanding and practical problem-solving skills. The benchmark progresses through five distinct stages, from basic arithmetic to college mathematics, and is structured to evaluate models at various depths of knowledge. Each stage includes theoretical questions and application problems, allowing us to measure a model's mathematical proficiency and its ability to apply concepts in practical scenarios. MathBench aims to enhance the evaluation of LLMs' mathematical abilities, providing a nuanced view of their knowledge understanding levels and problem solving skills in a bilingual context. The project is released at https://github.com/open-compass/MathBench .
Arrows of Math Reasoning Data Synthesis for Large Language Models: Diversity, Complexity and Correctness
Enhancing the mathematical reasoning of large language models (LLMs) demands high-quality training data, yet conventional methods face critical challenges in scalability, cost, and data reliability. To address these limitations, we propose a novel program-assisted synthesis framework that systematically generates a high-quality mathematical corpus with guaranteed diversity, complexity, and correctness. This framework integrates mathematical knowledge systems and domain-specific tools to create executable programs. These programs are then translated into natural language problem-solution pairs and vetted by a bilateral validation mechanism that verifies solution correctness against program outputs and ensures program-problem consistency. We have generated 12.3 million such problem-solving triples. Experiments demonstrate that models fine-tuned on our data significantly improve their inference capabilities, achieving state-of-the-art performance on several benchmark datasets and showcasing the effectiveness of our synthesis approach.
Enabling Efficient Equivariant Operations in the Fourier Basis via Gaunt Tensor Products
Developing equivariant neural networks for the E(3) group plays an important role in modeling 3D data across real-world applications. Enforcing this equivariance primarily involves the tensor products of irreducible representations (irreps). However, the computational complexity of such operations increases significantly as higher-order tensors are used. In this work, we propose a systematic approach to substantially accelerate the computation of the tensor products of irreps. We mathematically connect the commonly used Clebsch-Gordan coefficients to the Gaunt coefficients, which are integrals of products of three spherical harmonics. Through Gaunt coefficients, the tensor product of irreps becomes equivalent to the multiplication between spherical functions represented by spherical harmonics. This perspective further allows us to change the basis for the equivariant operations from spherical harmonics to a 2D Fourier basis. Consequently, the multiplication between spherical functions represented by a 2D Fourier basis can be efficiently computed via the convolution theorem and Fast Fourier Transforms. This transformation reduces the complexity of full tensor products of irreps from O(L^6) to O(L^3), where L is the max degree of irreps. Leveraging this approach, we introduce the Gaunt Tensor Product, which serves as a new method to construct efficient equivariant operations across different model architectures. Our experiments on the Open Catalyst Project and 3BPA datasets demonstrate both the increased efficiency and improved performance of our approach.
The Geometry of Bayesian Programming
We give a geometry of interaction model for a typed lambda-calculus endowed with operators for sampling from a continuous uniform distribution and soft conditioning, namely a paradigmatic calculus for higher-order Bayesian programming. The model is based on the category of measurable spaces and partial measurable functions, and is proved adequate with respect to both a distribution-based and a sampling based operational semantics.
Tensor Logic: The Language of AI
Progress in AI is hindered by the lack of a programming language with all the requisite features. Libraries like PyTorch and TensorFlow provide automatic differentiation and efficient GPU implementation, but are additions to Python, which was never intended for AI. Their lack of support for automated reasoning and knowledge acquisition has led to a long and costly series of hacky attempts to tack them on. On the other hand, AI languages like LISP an Prolog lack scalability and support for learning. This paper proposes tensor logic, a language that solves these problems by unifying neural and symbolic AI at a fundamental level. The sole construct in tensor logic is the tensor equation, based on the observation that logical rules and Einstein summation are essentially the same operation, and all else can be reduced to them. I show how to elegantly implement key forms of neural, symbolic and statistical AI in tensor logic, including transformers, formal reasoning, kernel machines and graphical models. Most importantly, tensor logic makes new directions possible, such as sound reasoning in embedding space. This combines the scalability and learnability of neural networks with the reliability and transparency of symbolic reasoning, and is potentially a basis for the wider adoption of AI.
Mesh-Informed Neural Operator : A Transformer Generative Approach
Generative models in function spaces, situated at the intersection of generative modeling and operator learning, are attracting increasing attention due to their immense potential in diverse scientific and engineering applications. While functional generative models are theoretically domain- and discretization-agnostic, current implementations heavily rely on the Fourier Neural Operator (FNO), limiting their applicability to regular grids and rectangular domains. To overcome these critical limitations, we introduce the Mesh-Informed Neural Operator (MINO). By leveraging graph neural operators and cross-attention mechanisms, MINO offers a principled, domain- and discretization-agnostic backbone for generative modeling in function spaces. This advancement significantly expands the scope of such models to more diverse applications in generative, inverse, and regression tasks. Furthermore, MINO provides a unified perspective on integrating neural operators with general advanced deep learning architectures. Finally, we introduce a suite of standardized evaluation metrics that enable objective comparison of functional generative models, addressing another critical gap in the field.
ORLM: Training Large Language Models for Optimization Modeling
Large Language Models (LLMs) have emerged as powerful tools for complex Operations Research (OR) in automating optimization modeling. However, current methodologies heavily rely on prompt engineering (e.g., multi-agent cooperation) with proprietary LLMs, raising data privacy concerns that could be prohibitive in industry applications. To tackle this issue, we propose training open-source LLMs for optimization modeling. We identify four critical requirements for the training dataset of OR LLMs, design and implement OR-Instruct, a semi-automated process for creating synthetic data tailored to specific requirements. We also introduce the IndustryOR benchmark, the first industrial benchmark for testing LLMs on solving real-world OR problems. We apply the data from OR-Instruct to various open-source LLMs of 7b size (termed as ORLMs), resulting in a significantly improved capability for optimization modeling. Our best-performing ORLM achieves state-of-the-art performance on the NL4OPT, MAMO, and IndustryOR benchmarks. Our code and data will be available at https://github.com/Cardinal-Operations/ORLM.
MAmmoTH: Building Math Generalist Models through Hybrid Instruction Tuning
We introduce MAmmoTH, a series of open-source large language models (LLMs) specifically tailored for general math problem-solving. The MAmmoTH models are trained on MathInstruct, our meticulously curated instruction tuning dataset. MathInstruct is compiled from 13 math datasets with intermediate rationales, six of which have rationales newly curated by us. It presents a unique hybrid of chain-of-thought (CoT) and program-of-thought (PoT) rationales, and also ensures extensive coverage of diverse fields in math. The hybrid of CoT and PoT not only unleashes the potential of tool use but also allows different thought processes for different math problems. As a result, the MAmmoTH series substantially outperform existing open-source models on nine mathematical reasoning datasets across all scales with an average accuracy gain between 13% and 29%. Remarkably, our MAmmoTH-7B model reaches 35% on MATH (a competition-level dataset), which exceeds the best open-source 7B model (WizardMath) by 25%, and the MAmmoTH-34B model achieves 46% accuracy on MATH, even surpassing GPT-4's CoT result. Our work underscores the importance of diverse problem coverage and the use of hybrid rationales in developing superior math generalist models.
MathCoder-VL: Bridging Vision and Code for Enhanced Multimodal Mathematical Reasoning
Natural language image-caption datasets, widely used for training Large Multimodal Models, mainly focus on natural scenarios and overlook the intricate details of mathematical figures that are critical for problem-solving, hindering the advancement of current LMMs in multimodal mathematical reasoning. To this end, we propose leveraging code as supervision for cross-modal alignment, since code inherently encodes all information needed to generate corresponding figures, establishing a precise connection between the two modalities. Specifically, we co-develop our image-to-code model and dataset with model-in-the-loop approach, resulting in an image-to-code model, FigCodifier and ImgCode-8.6M dataset, the largest image-code dataset to date. Furthermore, we utilize FigCodifier to synthesize novel mathematical figures and then construct MM-MathInstruct-3M, a high-quality multimodal math instruction fine-tuning dataset. Finally, we present MathCoder-VL, trained with ImgCode-8.6M for cross-modal alignment and subsequently fine-tuned on MM-MathInstruct-3M for multimodal math problem solving. Our model achieves a new open-source SOTA across all six metrics. Notably, it surpasses GPT-4o and Claude 3.5 Sonnet in the geometry problem-solving subset of MathVista, achieving improvements of 8.9% and 9.2%. The dataset and models will be released at https://github.com/mathllm/MathCoder.
Synthesis by Design: Controlled Data Generation via Structural Guidance
Mathematical reasoning remains challenging for LLMs due to complex logic and the need for precise computation. Existing methods enhance LLM reasoning by synthesizing datasets through problem rephrasing, but face issues with generation quality and problem complexity. To address this, we propose to extract structural information with generated problem-solving code from mathematical reasoning and guide data generation with structured solutions. Applied to MATH and GSM8K, our approach produces 39K problems with labeled intermediate steps and a 6.1K-problem benchmark of higher difficulty. Results on our benchmark show that model performance declines as reasoning length increases. Additionally, we conducted fine-tuning experiments using the proposed training data on a range of LLMs, and the results validate the effectiveness of our dataset. We hope the proposed method and dataset will contribute to future research in enhancing LLM reasoning capabilities. Our code and data are available at https://github.com/OpenCausaLab/StructuralGeneration.
LLM Interactive Optimization of Open Source Python Libraries -- Case Studies and Generalization
With the advent of large language models (LLMs) like GPT-3, a natural question is the extent to which these models can be utilized for source code optimization. This paper presents methodologically stringent case studies applied to well-known open source python libraries pillow and numpy. We find that contemporary LLM ChatGPT-4 (state September and October 2023) is surprisingly adept at optimizing energy and compute efficiency. However, this is only the case in interactive use, with a human expert in the loop. Aware of experimenter bias, we document our qualitative approach in detail, and provide transcript and source code. We start by providing a detailed description of our approach in conversing with the LLM to optimize the _getextrema function in the pillow library, and a quantitative evaluation of the performance improvement. To demonstrate qualitative replicability, we report further attempts on another locus in the pillow library, and one code locus in the numpy library, to demonstrate generalization within and beyond a library. In all attempts, the performance improvement is significant (factor up to 38). We have also not omitted reporting of failed attempts (there were none). We conclude that LLMs are a promising tool for code optimization in open source libraries, but that the human expert in the loop is essential for success. Nonetheless, we were surprised by how few iterations were required to achieve substantial performance improvements that were not obvious to the expert in the loop. We would like bring attention to the qualitative nature of this study, more robust quantitative studies would need to introduce a layer of selecting experts in a representative sample -- we invite the community to collaborate.
Instruction-Following Evaluation in Function Calling for Large Language Models
Function calling is a core capability of large language models, essential for AI agents. Existing benchmarks such as the Berkeley Function Calling Leaderboard (BFCL), tau^2-Bench (arXiv:2506.07982), and ACEBench (arXiv:2501.12851) evaluate argument correctness but do not test adherence to format instructions embedded in parameter descriptions, such as enclosing values in double quotes or using ISO date formats. We introduce IFEval-FC, a benchmark inspired by IFEval (arXiv:2311.07911) that assesses precise instruction following in function calling. IFEval-FC encodes verifiable formats directly within JSON schema descriptions, for example specifying that a value must not contain punctuation. It includes 750 test cases, each consisting of a function with an embedded format for one of its input parameters and a corresponding user query. Evaluation is fully algorithmic, ensuring objectivity, reproducibility, and scalability. Our results show that even state-of-the-art proprietary models, including GPT-5 and Claude 4.1 Opus, frequently fail to follow basic formatting rules, highlighting a practical limitation for real-world agent systems. The complete codebase and data are publicly available at https://github.com/Skripkon/IFEval-FC.
Rewrite the Stars
Recent studies have drawn attention to the untapped potential of the "star operation" (element-wise multiplication) in network design. While intuitive explanations abound, the foundational rationale behind its application remains largely unexplored. Our study attempts to reveal the star operation's ability to map inputs into high-dimensional, non-linear feature spaces -- akin to kernel tricks -- without widening the network. We further introduce StarNet, a simple yet powerful prototype, demonstrating impressive performance and low latency under compact network structure and efficient budget. Like stars in the sky, the star operation appears unremarkable but holds a vast universe of potential. Our work encourages further exploration across tasks, with codes available at https://github.com/ma-xu/Rewrite-the-Stars.
Enhancing Mathematical Reasoning in LLMs with Background Operators
We propose utilizing background operators for mathematical reasoning in large language models (LLMs). To achieve this, we define a set of fundamental mathematical predicates as the basic building blocks. For each mathematical problem, we develop a Prolog solution that includes problem-specific predicates and intermediate predicates derived from these background operators, ensuring that each solution adheres to the defined operator set. We introduce the MATH-Prolog corpus, which is derived from the counting and probability categories of the MATH corpus. For efficient data augmentation, we apply K-fold cross-validated self-training. This method incrementally generates new Prolog solutions for each fold, incorporating those verified as correct into the training set throughout the model training process. Our experimental results demonstrate that 5-fold crossvalidated self-training effectively identifies new, accurate Prolog solutions, achieving an accuracy of 84.6% on the cross-validated set, and 84.8% on the test set during fine-tuning the Meta-Llama-3.1-8B-Instruct model. This approach successfully uncovers new solutions with fully computable inference steps for previously unseen problems. Additionally, incorporating the background mathematical predicates into the prompt enhances solution coverage.
LEAN-GitHub: Compiling GitHub LEAN repositories for a versatile LEAN prover
Recently, large language models have presented promising results in aiding formal mathematical reasoning. However, their performance is restricted due to the scarcity of formal theorem-proving data, which requires additional effort to be extracted from raw formal language corpora. Meanwhile, a significant amount of human-written formal language corpora remains underutilized. To address this issue, we propose LEAN-GitHub, a dataset consisting of large-scale formal data extracted from almost all Lean 4 repositories on GitHub. After fine-tuning InternLM-math-plus on this dataset, our model achieved accuracies of 48.8% with a single pass and 54.5% with 64 passes on the Lean 4 miniF2F test, surpassing state-of-the-art method at 52%. And it also achieves state-of-the-art on two other Lean 4 benchmarks (ProofNet and Putnam) targeting different fields/levels of math. These results demonstrate that our proposed dataset is beneficial for formal reasoning on a wide range of math topics. We open-source our model at https://GitHub. com/InternLM/InternLM-Math and our data at https://huggingface.co/ datasets/InternLM/Lean-GitHub
Mixed Precision Training of Convolutional Neural Networks using Integer Operations
The state-of-the-art (SOTA) for mixed precision training is dominated by variants of low precision floating point operations, and in particular, FP16 accumulating into FP32 Micikevicius et al. (2017). On the other hand, while a lot of research has also happened in the domain of low and mixed-precision Integer training, these works either present results for non-SOTA networks (for instance only AlexNet for ImageNet-1K), or relatively small datasets (like CIFAR-10). In this work, we train state-of-the-art visual understanding neural networks on the ImageNet-1K dataset, with Integer operations on General Purpose (GP) hardware. In particular, we focus on Integer Fused-Multiply-and-Accumulate (FMA) operations which take two pairs of INT16 operands and accumulate results into an INT32 output.We propose a shared exponent representation of tensors and develop a Dynamic Fixed Point (DFP) scheme suitable for common neural network operations. The nuances of developing an efficient integer convolution kernel is examined, including methods to handle overflow of the INT32 accumulator. We implement CNN training for ResNet-50, GoogLeNet-v1, VGG-16 and AlexNet; and these networks achieve or exceed SOTA accuracy within the same number of iterations as their FP32 counterparts without any change in hyper-parameters and with a 1.8X improvement in end-to-end training throughput. To the best of our knowledge these results represent the first INT16 training results on GP hardware for ImageNet-1K dataset using SOTA CNNs and achieve highest reported accuracy using half-precision
Big-Math: A Large-Scale, High-Quality Math Dataset for Reinforcement Learning in Language Models
Increasing interest in reasoning models has led math to become a prominent testing ground for algorithmic and methodological improvements. However, existing open math datasets either contain a small collection of high-quality, human-written problems or a large corpus of machine-generated problems of uncertain quality, forcing researchers to choose between quality and quantity. In this work, we present Big-Math, a dataset of over 250,000 high-quality math questions with verifiable answers, purposefully made for reinforcement learning (RL). To create Big-Math, we rigorously filter, clean, and curate openly available datasets, extracting questions that satisfy our three desiderata: (1) problems with uniquely verifiable solutions, (2) problems that are open-ended, (3) and problems with a closed-form solution. To ensure the quality of Big-Math, we manually verify each step in our filtering process. Based on the findings from our filtering process, we introduce 47,000 new questions with verified answers, Big-Math-Reformulated: closed-ended questions (i.e. multiple choice questions) that have been reformulated as open-ended questions through a systematic reformulation algorithm. Compared to the most commonly used existing open-source datasets for math reasoning, GSM8k and MATH, Big-Math is an order of magnitude larger, while our rigorous filtering ensures that we maintain the questions most suitable for RL. We also provide a rigorous analysis of the dataset, finding that Big-Math contains a high degree of diversity across problem domains, and incorporates a wide range of problem difficulties, enabling a wide range of downstream uses for models of varying capabilities and training requirements. By bridging the gap between data quality and quantity, Big-Math establish a robust foundation for advancing reasoning in LLMs.
SBSC: Step-By-Step Coding for Improving Mathematical Olympiad Performance
We propose Step-by-Step Coding (SBSC): a multi-turn math reasoning framework that enables Large Language Models (LLMs) to generate sequence of programs for solving Olympiad level math problems. At each step/turn, by leveraging the code execution outputs and programs of previous steps, the model generates the next sub-task and the corresponding program to solve it. This way, SBSC, sequentially navigates to reach the final answer. SBSC allows more granular, flexible and precise approach to problem-solving compared to existing methods. Extensive experiments highlight the effectiveness of SBSC in tackling competition and Olympiad-level math problems. For Claude-3.5-Sonnet, we observe SBSC (greedy decoding) surpasses existing state-of-the-art (SOTA) program generation based reasoning strategies by absolute 10.7% on AMC12, 8% on AIME and 12.6% on MathOdyssey. Given SBSC is multi-turn in nature, we also benchmark SBSC's greedy decoding against self-consistency decoding results of existing SOTA math reasoning strategies and observe performance gain by absolute 6.2% on AMC, 6.7% on AIME and 7.4% on MathOdyssey.
Mathematical Language Models: A Survey
In recent years, there has been remarkable progress in leveraging Language Models (LMs), encompassing Pre-trained Language Models (PLMs) and Large-scale Language Models (LLMs), within the domain of mathematics. This paper conducts a comprehensive survey of mathematical LMs, systematically categorizing pivotal research endeavors from two distinct perspectives: tasks and methodologies. The landscape reveals a large number of proposed mathematical LLMs, which are further delineated into instruction learning, tool-based methods, fundamental CoT techniques, and advanced CoT methodologies. In addition, our survey entails the compilation of over 60 mathematical datasets, including training datasets, benchmark datasets, and augmented datasets. Addressing the primary challenges and delineating future trajectories within the field of mathematical LMs, this survey is positioned as a valuable resource, poised to facilitate and inspire future innovation among researchers invested in advancing this domain.
Functional Benchmarks for Robust Evaluation of Reasoning Performance, and the Reasoning Gap
We propose a framework for robust evaluation of reasoning capabilities of language models, using functional variants of benchmarks. Models that solve a reasoning test should exhibit no difference in performance over the static version of a problem compared to a snapshot of the functional variant. We have rewritten the relevant fragment of the MATH benchmark into its functional variant MATH(), with functionalization of other benchmarks to follow. When evaluating current state-of-the-art models over snapshots of MATH(), we find a reasoning gap -- the percentage difference between the static and functional accuracies. We find reasoning gaps from 58.35% to 80.31% among the state-of-the-art closed and open weights models that perform well on static benchmarks, with the caveat that the gaps are likely to be smaller with more sophisticated prompting strategies. Here we show that models which anecdotally have good reasoning performance over real-world tasks, have quantifiable lower gaps, motivating the open problem of building "gap 0" models. Code for evaluation and new evaluation datasets, three MATH() snapshots, are publicly available at https://github.com/consequentai/fneval/.
Proof-irrelevant model of CC with predicative induction and judgmental equality
We present a set-theoretic, proof-irrelevant model for Calculus of Constructions (CC) with predicative induction and judgmental equality in Zermelo-Fraenkel set theory with an axiom for countably many inaccessible cardinals. We use Aczel's trace encoding which is universally defined for any function type, regardless of being impredicative. Direct and concrete interpretations of simultaneous induction and mutually recursive functions are also provided by extending Dybjer's interpretations on the basis of Aczel's rule sets. Our model can be regarded as a higher-order generalization of the truth-table methods. We provide a relatively simple consistency proof of type theory, which can be used as the basis for a theorem prover.
Pychop: Emulating Low-Precision Arithmetic in Numerical Methods and Neural Networks
Motivated by the growing demand for low-precision arithmetic in computational science, we exploit lower-precision emulation in Python -- widely regarded as the dominant programming language for numerical analysis and machine learning. Low-precision training has revolutionized deep learning by enabling more efficient computation and reduced memory and energy consumption while maintaining model fidelity. To better enable numerical experimentation with and exploration of low precision computation, we developed the Pychop library, which supports customizable floating-point formats and a comprehensive set of rounding modes in Python, allowing users to benefit from fast, low-precision emulation in numerous applications. Pychop also introduces interfaces for both PyTorch and JAX, enabling efficient low-precision emulation on GPUs for neural network training and inference with unparalleled flexibility. In this paper, we offer a comprehensive exposition of the design, implementation, validation, and practical application of Pychop, establishing it as a foundational tool for advancing efficient mixed-precision algorithms. Furthermore, we present empirical results on low-precision emulation for image classification and object detection using published datasets, illustrating the sensitivity of the use of low precision and offering valuable insights into its impact. Pychop enables in-depth investigations into the effects of numerical precision, facilitates the development of novel hardware accelerators, and integrates seamlessly into existing deep learning workflows. Software and experimental code are publicly available at https://github.com/inEXASCALE/pychop.
Facilitating Multi-turn Function Calling for LLMs via Compositional Instruction Tuning
Large Language Models (LLMs) have exhibited significant potential in performing diverse tasks, including the ability to call functions or use external tools to enhance their performance. While current research on function calling by LLMs primarily focuses on single-turn interactions, this paper addresses the overlooked necessity for LLMs to engage in multi-turn function calling--critical for handling compositional, real-world queries that require planning with functions but not only use functions. To facilitate this, we introduce an approach, BUTTON, which generates synthetic compositional instruction tuning data via bottom-up instruction construction and top-down trajectory generation. In the bottom-up phase, we generate simple atomic tasks based on real-world scenarios and build compositional tasks using heuristic strategies based on atomic tasks. Corresponding functions are then developed for these compositional tasks. The top-down phase features a multi-agent environment where interactions among simulated humans, assistants, and tools are utilized to gather multi-turn function calling trajectories. This approach ensures task compositionality and allows for effective function and trajectory generation by examining atomic tasks within compositional tasks. We produce a dataset BUTTONInstruct comprising 8k data points and demonstrate its effectiveness through extensive experiments across various LLMs.
Efficient and Modular Implicit Differentiation
Automatic differentiation (autodiff) has revolutionized machine learning. It allows to express complex computations by composing elementary ones in creative ways and removes the burden of computing their derivatives by hand. More recently, differentiation of optimization problem solutions has attracted widespread attention with applications such as optimization layers, and in bi-level problems such as hyper-parameter optimization and meta-learning. However, so far, implicit differentiation remained difficult to use for practitioners, as it often required case-by-case tedious mathematical derivations and implementations. In this paper, we propose automatic implicit differentiation, an efficient and modular approach for implicit differentiation of optimization problems. In our approach, the user defines directly in Python a function F capturing the optimality conditions of the problem to be differentiated. Once this is done, we leverage autodiff of F and the implicit function theorem to automatically differentiate the optimization problem. Our approach thus combines the benefits of implicit differentiation and autodiff. It is efficient as it can be added on top of any state-of-the-art solver and modular as the optimality condition specification is decoupled from the implicit differentiation mechanism. We show that seemingly simple principles allow to recover many existing implicit differentiation methods and create new ones easily. We demonstrate the ease of formulating and solving bi-level optimization problems using our framework. We also showcase an application to the sensitivity analysis of molecular dynamics.
MathReal: We Keep It Real! A Real Scene Benchmark for Evaluating Math Reasoning in Multimodal Large Language Models
Multimodal Large Language Models (MLLMs) have demonstrated remarkable capabilities in visual mathematical reasoning across various existing benchmarks. However, these benchmarks are predominantly based on clean or processed multimodal inputs, without incorporating the images provided by real-world Kindergarten through 12th grade (K-12) educational users. To address this gap, we introduce MathReal, a meticulously curated dataset comprising 2,000 mathematical questions with images captured by handheld mobile devices in authentic scenarios. Each question is an image, containing the question text and visual element. We systematically classify the real images into three primary categories: image quality degradation, perspective variation, and irrelevant content interference, which are further delineated into 14 subcategories. Additionally, MathReal spans five core knowledge and ability categories, which encompass three question types and are divided into three difficulty levels. To comprehensively evaluate the multimodal mathematical reasoning abilities of state-of-the-art MLLMs in real-world scenarios, we design six experimental settings that enable a systematic analysis of their performance. Through extensive experimentation, we find that the problem-solving abilities of existing MLLMs are significantly challenged in realistic educational contexts. Based on this, we conduct a thorough analysis of their performance and error patterns, providing insights into their recognition, comprehension, and reasoning capabilities, and outlining directions for future improvements. Data and code: https://github.com/junfeng0288/MathReal.
One Example Shown, Many Concepts Known! Counterexample-Driven Conceptual Reasoning in Mathematical LLMs
Leveraging mathematical Large Language Models (LLMs) for proof generation is a fundamental topic in LLMs research. We argue that the ability of current LLMs to prove statements largely depends on whether they have encountered the relevant proof process during training. This reliance limits their deeper understanding of mathematical theorems and related concepts. Inspired by the pedagogical method of "proof by counterexamples" commonly used in human mathematics education, our work aims to enhance LLMs' ability to conduct mathematical reasoning and proof through counterexamples. Specifically, we manually create a high-quality, university-level mathematical benchmark, CounterMATH, which requires LLMs to prove mathematical statements by providing counterexamples, thereby assessing their grasp of mathematical concepts. Additionally, we develop a data engineering framework to automatically obtain training data for further model improvement. Extensive experiments and detailed analyses demonstrate that CounterMATH is challenging, indicating that LLMs, such as OpenAI o1, have insufficient counterexample-driven proof capabilities. Moreover, our exploration into model training reveals that strengthening LLMs' counterexample-driven conceptual reasoning abilities is crucial for improving their overall mathematical capabilities. We believe that our work offers new perspectives on the community of mathematical LLMs.
Space-time tradeoffs of lenses and optics via higher category theory
Optics and lenses are abstract categorical gadgets that model systems with bidirectional data flow. In this paper we observe that the denotational definition of optics - identifying two optics as equivalent by observing their behaviour from the outside - is not suitable for operational, software oriented approaches where optics are not merely observed, but built with their internal setups in mind. We identify operational differences between denotationally isomorphic categories of cartesian optics and lenses: their different composition rule and corresponding space-time tradeoffs, positioning them at two opposite ends of a spectrum. With these motivations we lift the existing categorical constructions and their relationships to the 2-categorical level, showing that the relevant operational concerns become visible. We define the 2-category 2-Optic(C) whose 2-cells explicitly track optics' internal configuration. We show that the 1-category Optic(C) arises by locally quotienting out the connected components of this 2-category. We show that the embedding of lenses into cartesian optics gets weakened from a functor to an oplax functor whose oplaxator now detects the different composition rule. We determine the difficulties in showing this functor forms a part of an adjunction in any of the standard 2-categories. We establish a conjecture that the well-known isomorphism between cartesian lenses and optics arises out of the lax 2-adjunction between their double-categorical counterparts. In addition to presenting new research, this paper is also meant to be an accessible introduction to the topic.
Numerical analysis of Givens rotation
Generating 2-by-2 unitary matrices in floating-precision arithmetic is a delicate task. One way to reduce the accumulation error is to use less floating-point operations to compute each of the entries in the 2-by-2 unitary matrix. This paper shows an algorithm that reduces the number of operations to compute the entries of a Givens rotation. Overall, the new algorithm has more operations in total when compared to algorithms in different releases of LAPACK, but less operations per entry. Numerical tests show that the new algorithm is more accurate on average.
Measuring Multimodal Mathematical Reasoning with MATH-Vision Dataset
Recent advancements in Large Multimodal Models (LMMs) have shown promising results in mathematical reasoning within visual contexts, with models approaching human-level performance on existing benchmarks such as MathVista. However, we observe significant limitations in the diversity of questions and breadth of subjects covered by these benchmarks. To address this issue, we present the MATH-Vision (MATH-V) dataset, a meticulously curated collection of 3,040 high-quality mathematical problems with visual contexts sourced from real math competitions. Spanning 16 distinct mathematical disciplines and graded across 5 levels of difficulty, our dataset provides a comprehensive and diverse set of challenges for evaluating the mathematical reasoning abilities of LMMs. Through extensive experimentation, we unveil a notable performance gap between current LMMs and human performance on MATH-V, underscoring the imperative for further advancements in LMMs. Moreover, our detailed categorization allows for a thorough error analysis of LMMs, offering valuable insights to guide future research and development. The project is available at https://mathvision-cuhk.github.io
Unified Functional Hashing in Automatic Machine Learning
The field of Automatic Machine Learning (AutoML) has recently attained impressive results, including the discovery of state-of-the-art machine learning solutions, such as neural image classifiers. This is often done by applying an evolutionary search method, which samples multiple candidate solutions from a large space and evaluates the quality of each candidate through a long training process. As a result, the search tends to be slow. In this paper, we show that large efficiency gains can be obtained by employing a fast unified functional hash, especially through the functional equivalence caching technique, which we also present. The central idea is to detect by hashing when the search method produces equivalent candidates, which occurs very frequently, and this way avoid their costly re-evaluation. Our hash is "functional" in that it identifies equivalent candidates even if they were represented or coded differently, and it is "unified" in that the same algorithm can hash arbitrary representations; e.g. compute graphs, imperative code, or lambda functions. As evidence, we show dramatic improvements on multiple AutoML domains, including neural architecture search and algorithm discovery. Finally, we consider the effect of hash collisions, evaluation noise, and search distribution through empirical analysis. Altogether, we hope this paper may serve as a guide to hashing techniques in AutoML.
MuMath-Code: Combining Tool-Use Large Language Models with Multi-perspective Data Augmentation for Mathematical Reasoning
The tool-use Large Language Models (LLMs) that integrate with external Python interpreters have significantly enhanced mathematical reasoning capabilities for open-source LLMs, while tool-free methods chose another track: augmenting math reasoning data. However, a great method to integrate the above two research paths and combine their advantages remains to be explored. In this work, we firstly include new math questions via multi-perspective data augmenting methods and then synthesize code-nested solutions to them. The open LLMs (i.e., Llama-2) are finetuned on the augmented dataset to get the resulting models, MuMath-Code (mu-Math-Code). During the inference phase, our MuMath-Code generates code and interacts with the external python interpreter to get the execution results. Therefore, MuMath-Code leverages the advantages of both the external tool and data augmentation. To fully leverage the advantages of our augmented data, we propose a two-stage training strategy: In Stage-1, we finetune Llama-2 on pure CoT data to get an intermediate model, which then is trained on the code-nested data in Stage-2 to get the resulting MuMath-Code. Our MuMath-Code-7B achieves 83.8 on GSM8K and 52.4 on MATH, while MuMath-Code-70B model achieves new state-of-the-art performance among open methods -- achieving 90.7% on GSM8K and 55.1% on MATH. Extensive experiments validate the combination of tool use and data augmentation, as well as our two-stage training strategy. We release the proposed dataset along with the associated code for public use.
Neural Status Registers
Standard Neural Networks can learn mathematical operations, but they do not extrapolate. Extrapolation means that the model can apply to larger numbers, well beyond those observed during training. Recent architectures tackle arithmetic operations and can extrapolate; however, the equally important problem of quantitative reasoning remains unaddressed. In this work, we propose a novel architectural element, the Neural Status Register (NSR), for quantitative reasoning over numbers. Our NSR relaxes the discrete bit logic of physical status registers to continuous numbers and allows end-to-end learning with gradient descent. Experiments show that the NSR achieves solutions that extrapolate to numbers many orders of magnitude larger than those in the training set. We successfully train the NSR on number comparisons, piecewise discontinuous functions, counting in sequences, recurrently finding minimums, finding shortest paths in graphs, and comparing digits in images.
DynaMath: A Dynamic Visual Benchmark for Evaluating Mathematical Reasoning Robustness of Vision Language Models
The rapid advancements in Vision-Language Models (VLMs) have shown great potential in tackling mathematical reasoning tasks that involve visual context. Unlike humans who can reliably apply solution steps to similar problems with minor modifications, we found that SOTA VLMs like GPT-4o can consistently fail in these scenarios, revealing limitations in their mathematical reasoning capabilities. In this paper, we investigate the mathematical reasoning robustness in VLMs and evaluate how well these models perform under different variants of the same question, such as changes in visual numerical values or function graphs. While several vision-based math benchmarks have been developed to assess VLMs' problem-solving capabilities, these benchmarks contain only static sets of problems and cannot easily evaluate mathematical reasoning robustness. To fill this gap, we introduce DynaMath, a dynamic visual math benchmark designed for in-depth assessment of VLMs. DynaMath includes 501 high-quality, multi-topic seed questions, each represented as a Python program. Those programs are carefully designed and annotated to enable the automatic generation of a much larger set of concrete questions, including many different types of visual and textual variations. DynaMath allows us to evaluate the generalization ability of VLMs, by assessing their performance under varying input conditions of a seed question. We evaluated 14 SOTA VLMs with 5,010 generated concrete questions. Our results show that the worst-case model accuracy, defined as the percentage of correctly answered seed questions in all 10 variants, is significantly lower than the average-case accuracy. Our analysis emphasizes the need to study the robustness of VLMs' reasoning abilities, and DynaMath provides valuable insights to guide the development of more reliable models for mathematical reasoning.
CoderEval: A Benchmark of Pragmatic Code Generation with Generative Pre-trained Models
Code generation models based on the pre-training and fine-tuning paradigm have been increasingly attempted by both academia and industry, resulting in well-known industrial models such as Codex, CodeGen, and PanGu-Coder. To evaluate the effectiveness of these models, multiple existing benchmarks are proposed, including only cases of generating a standalone function, i.e., a function that may invoke or access only built-in functions and standard libraries. However, non-standalone functions, which typically are not included in the existing benchmarks, constitute more than 70% of the functions in popular open-source projects, and evaluating models' effectiveness on standalone functions cannot reflect these models' effectiveness on pragmatic code generation scenarios. To help bridge the preceding gap, in this paper, we propose a benchmark named CoderEval, consisting of 230 Python and 230 Java code generation tasks carefully curated from popular real-world open-source projects and a self-contained execution platform to automatically assess the functional correctness of generated code. CoderEval supports code generation tasks from six levels of context dependency, where context refers to code elements such as types, APIs, variables, and consts defined outside the function under generation but within the dependent third-party libraries, current class, file, or project. CoderEval can be used to evaluate the effectiveness of models in generating code beyond only standalone functions. By evaluating three code generation models on CoderEval, we find that the effectiveness of these models in generating standalone functions is substantially higher than that in generating non-standalone functions. Our analysis highlights the current progress and pinpoints future directions to further improve a model's effectiveness by leveraging contextual information for pragmatic code generation.
Theano: A Python framework for fast computation of mathematical expressions
Theano is a Python library that allows to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. Since its introduction, it has been one of the most used CPU and GPU mathematical compilers - especially in the machine learning community - and has shown steady performance improvements. Theano is being actively and continuously developed since 2008, multiple frameworks have been built on top of it and it has been used to produce many state-of-the-art machine learning models. The present article is structured as follows. Section I provides an overview of the Theano software and its community. Section II presents the principal features of Theano and how to use them, and compares them with other similar projects. Section III focuses on recently-introduced functionalities and improvements. Section IV compares the performance of Theano against Torch7 and TensorFlow on several machine learning models. Section V discusses current limitations of Theano and potential ways of improving it.
Exploring Language Model's Code Generation Ability with Auxiliary Functions
Auxiliary function is a helpful component to improve language model's code generation ability. However, a systematic exploration of how they affect has yet to be done. In this work, we comprehensively evaluate the ability to utilize auxiliary functions encoded in recent code-pretrained language models. First, we construct a human-crafted evaluation set, called HumanExtension, which contains examples of two functions where one function assists the other. With HumanExtension, we design several experiments to examine their ability in a multifaceted way. Our evaluation processes enable a comprehensive understanding of including auxiliary functions in the prompt in terms of effectiveness and robustness. An additional implementation style analysis captures the models' various implementation patterns when they access the auxiliary function. Through this analysis, we discover the models' promising ability to utilize auxiliary functions including their self-improving behavior by implementing the two functions step-by-step. However, our analysis also reveals the model's underutilized behavior to call the auxiliary function, suggesting the future direction to enhance their implementation by eliciting the auxiliary function call ability encoded in the models. We release our code and dataset to facilitate this research direction.
Unification of popular artificial neural network activation functions
We present a unified representation of the most popular neural network activation functions. Adopting Mittag-Leffler functions of fractional calculus, we propose a flexible and compact functional form that is able to interpolate between various activation functions and mitigate common problems in training neural networks such as vanishing and exploding gradients. The presented gated representation extends the scope of fixed-shape activation functions to their adaptive counterparts whose shape can be learnt from the training data. The derivatives of the proposed functional form can also be expressed in terms of Mittag-Leffler functions making it a suitable candidate for gradient-based backpropagation algorithms. By training multiple neural networks of different complexities on various datasets with different sizes, we demonstrate that adopting a unified gated representation of activation functions offers a promising and affordable alternative to individual built-in implementations of activation functions in conventional machine learning frameworks.
MATH-Beyond: A Benchmark for RL to Expand Beyond the Base Model
With the advent of DeepSeek-R1, a new wave of reinforcement learning (RL) methods has emerged that seem to unlock stronger mathematical reasoning. However, a closer look at the open-source ecosystem reveals a critical limitation: with sufficiently many draws (e.g., pass@1024), many existing base models already solve nearly all questions on widely used math benchmarks such as MATH-500 and AIME 2024. This suggests that the RL fine-tuning methods prevalent in the LLM reasoning literature largely sharpen existing solution modes rather than discovering entirely new ones. Such sharpening stands in contrast to the broader promise of RL: to foster exploration and to acquire new skills. To move beyond this plateau, we introduce MATH-Beyond (MATH-B), a benchmark deliberately constructed to defeat common open-source models of up to 8B parameters even under large sampling budgets. Improving performance on our benchmark via RL requires methods that learn to reason in ways that go beyond base model capabilities in repeated sampling. Since the problems are drawn from subsets of DAPO-Math-17K and DeepScaleR datasets, they remain topically equivalent to standard high-school math. Validating our premise, RL fine-tuned models such as Nemotron-Research-Reasoning-Qwen-1.5B and DeepScaleR-1.5B-Preview perform poorly on MATH-B at pass@1024, showing how existing approaches fall short on tackling harder instances. We hope MATH-B will catalyze exploration-driven RL approaches that elicit deeper reasoning capabilities. We release MATH-B at https://huggingface.co/datasets/brendel-group/MATH-Beyond.
MAVIS: Mathematical Visual Instruction Tuning
Multi-modal Large Language Models (MLLMs) have recently emerged as a significant focus in academia and industry. Despite their proficiency in general multi-modal scenarios, the mathematical problem-solving capabilities in visual contexts remain insufficiently explored. We identify three key areas within MLLMs that need to be improved: visual encoding of math diagrams, diagram-language alignment, and mathematical reasoning skills. This draws forth an urgent demand for large-scale, high-quality data and training pipelines in visual mathematics. In this paper, we propose MAVIS, the first MAthematical VISual instruction tuning paradigm for MLLMs, involving a series of mathematical visual datasets and specialized MLLMs. Targeting the three issues, MAVIS contains three progressive training stages from scratch. First, we curate MAVIS-Caption, consisting of 558K diagram-caption pairs, to fine-tune a math-specific vision encoder (CLIP-Math) through contrastive learning, tailored for improved diagram visual encoding. Second, we utilize MAVIS-Caption to align the CLIP-Math with a large language model (LLM) by a projection layer, enhancing vision-language alignment in mathematical domains. Third, we introduce MAVIS-Instruct, including 900K meticulously collected and annotated visual math problems, which is adopted to finally instruct-tune the MLLM for robust mathematical reasoning skills. In MAVIS-Instruct, we incorporate complete chain-of-thought (CoT) rationales for each problem, and minimize textual redundancy, thereby concentrating the model towards the visual elements. Data and Models are released at https://github.com/ZrrSkywalker/MAVIS
Measuring Arithmetic Extrapolation Performance
The Neural Arithmetic Logic Unit (NALU) is a neural network layer that can learn exact arithmetic operations between the elements of a hidden state. The goal of NALU is to learn perfect extrapolation, which requires learning the exact underlying logic of an unknown arithmetic problem. Evaluating the performance of the NALU is non-trivial as one arithmetic problem might have many solutions. As a consequence, single-instance MSE has been used to evaluate and compare performance between models. However, it can be hard to interpret what magnitude of MSE represents a correct solution and models sensitivity to initialization. We propose using a success-criterion to measure if and when a model converges. Using a success-criterion we can summarize success-rate over many initialization seeds and calculate confidence intervals. We contribute a generalized version of the previous arithmetic benchmark to measure models sensitivity under different conditions. This is, to our knowledge, the first extensive evaluation with respect to convergence of the NALU and its sub-units. Using a success-criterion to summarize 4800 experiments we find that consistently learning arithmetic extrapolation is challenging, in particular for multiplication.
A Constructive, Type-Theoretic Approach to Regression via Global Optimisation
We examine the connections between deterministic, complete, and general global optimisation of continuous functions and a general concept of regression from the perspective of constructive type theory via the concept of 'searchability'. We see how the property of convergence of global optimisation is a straightforward consequence of searchability. The abstract setting allows us to generalise searchability and continuity to higher-order functions, so that we can formulate novel convergence criteria for regression, derived from the convergence of global optimisation. All the theory and the motivating examples are fully formalised in the proof assistant Agda.
RealMath: A Continuous Benchmark for Evaluating Language Models on Research-Level Mathematics
Existing benchmarks for evaluating mathematical reasoning in large language models (LLMs) rely primarily on competition problems, formal proofs, or artificially challenging questions -- failing to capture the nature of mathematics encountered in actual research environments. We introduce RealMath, a novel benchmark derived directly from research papers and mathematical forums that assesses LLMs' abilities on authentic mathematical tasks. Our approach addresses three critical challenges: sourcing diverse research-level content, enabling reliable automated evaluation through verifiable statements, and designing a continually refreshable dataset to mitigate contamination risks. Experimental results across multiple LLMs reveal surprising capabilities in handling research mathematics compared to competition problems, suggesting current models may already serve as valuable assistants for working mathematicians despite limitations on highly challenging problems. The code and dataset for RealMath are publicly available.
A Library for Representing Python Programs as Graphs for Machine Learning
Graph representations of programs are commonly a central element of machine learning for code research. We introduce an open source Python library python_graphs that applies static analysis to construct graph representations of Python programs suitable for training machine learning models. Our library admits the construction of control-flow graphs, data-flow graphs, and composite ``program graphs'' that combine control-flow, data-flow, syntactic, and lexical information about a program. We present the capabilities and limitations of the library, perform a case study applying the library to millions of competitive programming submissions, and showcase the library's utility for machine learning research.
Comparative Analysis of Phenomenological Approximations of the Light Curves of Eclipsing Binary Stars with Additional Parameters
A comparative analysis of the special shapes (patterns, profiles) of the eclipses applied for the phenomenological modeling of the light curves of eclipsing binary stars is conducted. Families of functions are considered, generalizing local approximations (Andronov, 2010, 2012) and the functions theoretically unlimited in a width, based on a Gaussian (Mikulasek, 2015). For an analysis, the light curve of the star V0882 Car = 2MASS J11080308 - 6145589 of the classic Algol - subtype (\beta Persei) is used. By analyzing dozens of modified functions with additional parameters, it was chosen the 14 best ones according to the criterion of the least sum of squares of deviations. The best are the functions with an additional parameter, describing profiles, which are limited in phase.
Unsupervised Discovery of Formulas for Mathematical Constants
Ongoing efforts that span over decades show a rise of AI methods for accelerating scientific discovery, yet accelerating discovery in mathematics remains a persistent challenge for AI. Specifically, AI methods were not effective in creation of formulas for mathematical constants because each such formula must be correct for infinite digits of precision, with "near-true" formulas providing no insight toward the correct ones. Consequently, formula discovery lacks a clear distance metric needed to guide automated discovery in this realm. In this work, we propose a systematic methodology for categorization, characterization, and pattern identification of such formulas. The key to our methodology is introducing metrics based on the convergence dynamics of the formulas, rather than on the numerical value of the formula. These metrics enable the first automated clustering of mathematical formulas. We demonstrate this methodology on Polynomial Continued Fraction formulas, which are ubiquitous in their intrinsic connections to mathematical constants, and generalize many mathematical functions and structures. We test our methodology on a set of 1,768,900 such formulas, identifying many known formulas for mathematical constants, and discover previously unknown formulas for pi, ln(2), Gauss', and Lemniscate's constants. The uncovered patterns enable a direct generalization of individual formulas to infinite families, unveiling rich mathematical structures. This success paves the way towards a generative model that creates formulas fulfilling specified mathematical properties, accelerating the rate of discovery of useful formulas.
Multimodal Mathematical Reasoning Embedded in Aerial Vehicle Imagery: Benchmarking, Analysis, and Exploration
Mathematical reasoning is critical for tasks such as precise distance and area computations, trajectory estimations, and spatial analysis in unmanned aerial vehicle (UAV) based remote sensing, yet current vision-language models (VLMs) have not been adequately tested in this domain. To address this gap, we introduce AVI-Math, the first benchmark to rigorously evaluate multimodal mathematical reasoning in aerial vehicle imagery, moving beyond simple counting tasks to include domain-specific knowledge in areas such as geometry, logic, and algebra. The dataset comprises 3,773 high-quality vehicle-related questions captured from UAV views, covering 6 mathematical subjects and 20 topics. The data, collected at varying altitudes and from multiple UAV angles, reflects real-world UAV scenarios, ensuring the diversity and complexity of the constructed mathematical problems. In this paper, we benchmark 14 prominent VLMs through a comprehensive evaluation and demonstrate that, despite their success on previous multimodal benchmarks, these models struggle with the reasoning tasks in AVI-Math. Our detailed analysis highlights significant limitations in the mathematical reasoning capabilities of current VLMs and suggests avenues for future research. Furthermore, we explore the use of Chain-of-Thought prompting and fine-tuning techniques, which show promise in addressing the reasoning challenges in AVI-Math. Our findings not only expose the limitations of VLMs in mathematical reasoning but also offer valuable insights for advancing UAV-based trustworthy VLMs in real-world applications. The code, and datasets will be released at https://github.com/VisionXLab/avi-math
Llemma: An Open Language Model For Mathematics
We present Llemma, a large language model for mathematics. We continue pretraining Code Llama on the Proof-Pile-2, a mixture of scientific papers, web data containing mathematics, and mathematical code, yielding Llemma. On the MATH benchmark Llemma outperforms all known open base models, as well as the unreleased Minerva model suite on an equi-parameter basis. Moreover, Llemma is capable of tool use and formal theorem proving without any further finetuning. We openly release all artifacts, including 7 billion and 34 billion parameter models, the Proof-Pile-2, and code to replicate our experiments.
UGMathBench: A Diverse and Dynamic Benchmark for Undergraduate-Level Mathematical Reasoning with Large Language Models
Large Language Models (LLMs) have made significant strides in mathematical reasoning, underscoring the need for a comprehensive and fair evaluation of their capabilities. However, existing benchmarks often fall short, either lacking extensive coverage of undergraduate-level mathematical problems or probably suffering from test-set contamination. To address these issues, we introduce UGMathBench, a diverse and dynamic benchmark specifically designed for evaluating undergraduate-level mathematical reasoning with LLMs. UGMathBench comprises 5,062 problems across 16 subjects and 111 topics, featuring 10 distinct answer types. Each problem includes three randomized versions, with additional versions planned for release as leading open-source LLMs become saturated in UGMathBench. Furthermore, we propose two key metrics: effective accuracy (EAcc), which measures the percentage of correctly solved problems across all three versions, and reasoning gap (Delta), which assesses reasoning robustness by calculating the difference between the average accuracy across all versions and EAcc. Our extensive evaluation of 23 leading LLMs reveals that the highest EAcc achieved is 56.3\% by OpenAI-o1-mini, with large Delta values observed across different models. This highlights the need for future research aimed at developing "large reasoning models" with high EAcc and Delta = 0. We anticipate that the release of UGMathBench, along with its detailed evaluation codes, will serve as a valuable resource to advance the development of LLMs in solving mathematical problems.
Reverse Chain: A Generic-Rule for LLMs to Master Multi-API Planning
While enabling large language models to implement function calling (known as APIs) can greatly enhance the performance of LLMs, function calling is still a challenging task due to the complicated relations between different APIs, especially in a context-learning setting without fine-tuning. This paper proposes a simple yet controllable target-driven approach called Reverse Chain to empower LLMs with capabilities to use external APIs with only prompts. Given that most open-source LLMs have limited tool-use or tool-plan capabilities, LLMs in Reverse Chain are only employed to implement simple tasks, e.g., API selection and argument completion, and a generic rule is employed to implement a controllable multiple functions calling. In this generic rule, after selecting a final API to handle a given task via LLMs, we first ask LLMs to fill the required arguments from user query and context. Some missing arguments could be further completed by letting LLMs select another API based on API description before asking user. This process continues until a given task is completed. Extensive numerical experiments indicate an impressive capability of Reverse Chain on implementing multiple function calling. Interestingly enough, the experiments also reveal that tool-use capabilities of the existing LLMs, e.g., ChatGPT, can be greatly improved via Reverse Chain.
Skywork-Math: Data Scaling Laws for Mathematical Reasoning in Large Language Models -- The Story Goes On
In this paper, we investigate the underlying factors that potentially enhance the mathematical reasoning capabilities of large language models (LLMs). We argue that the data scaling law for math reasoning capabilities in modern LLMs is far from being saturated, highlighting how the model's quality improves with increases in data quantity. To support this claim, we introduce the Skywork-Math model series, supervised fine-tuned (SFT) on common 7B LLMs using our proposed 2.5M-instance Skywork-MathQA dataset. Skywork-Math 7B has achieved impressive accuracies of 51.2% on the competition-level MATH benchmark and 83.9% on the GSM8K benchmark using only SFT data, outperforming an early version of GPT-4 on MATH. The superior performance of Skywork-Math models contributes to our novel two-stage data synthesis and model SFT pipelines, which include three different augmentation methods and a diverse seed problem set, ensuring both the quantity and quality of Skywork-MathQA dataset across varying difficulty levels. Most importantly, we provide several practical takeaways to enhance math reasoning abilities in LLMs for both research and industry applications.
Category Theory for Quantum Natural Language Processing
This thesis introduces quantum natural language processing (QNLP) models based on a simple yet powerful analogy between computational linguistics and quantum mechanics: grammar as entanglement. The grammatical structure of text and sentences connects the meaning of words in the same way that entanglement structure connects the states of quantum systems. Category theory allows to make this language-to-qubit analogy formal: it is a monoidal functor from grammar to vector spaces. We turn this abstract analogy into a concrete algorithm that translates the grammatical structure onto the architecture of parameterised quantum circuits. We then use a hybrid classical-quantum algorithm to train the model so that evaluating the circuits computes the meaning of sentences in data-driven tasks. The implementation of QNLP models motivated the development of DisCoPy (Distributional Compositional Python), the toolkit for applied category theory of which the first chapter gives a comprehensive overview. String diagrams are the core data structure of DisCoPy, they allow to reason about computation at a high level of abstraction. We show how they can encode both grammatical structures and quantum circuits, but also logical formulae, neural networks or arbitrary Python code. Monoidal functors allow to translate these abstract diagrams into concrete computation, interfacing with optimised task-specific libraries. The second chapter uses DisCopy to implement QNLP models as parameterised functors from grammar to quantum circuits. It gives a first proof-of-concept for the more general concept of functorial learning: generalising machine learning from functions to functors by learning from diagram-like data. In order to learn optimal functor parameters via gradient descent, we introduce the notion of diagrammatic differentiation: a graphical calculus for computing the gradients of parameterised diagrams.
MathClean: A Benchmark for Synthetic Mathematical Data Cleaning
With the rapid development of large language models (LLMs), the quality of training data has become crucial. Among the various types of training data, mathematical data plays a key role in enabling LLMs to acquire strong reasoning abilities. While high-quality open-source data is important, it is often insufficient for pre-training, necessitating the addition of synthetic math problems. However, synthetic math questions and answers can introduce inaccuracies, which may degrade both the training data and web data. Therefore, an effective method for cleaning synthetic math data is essential. In this paper, we propose the MathClean benchmark to evaluate the effectiveness of math data cleaning models. The MathClean benchmark consists of 2,000 correct questions and 2,000 erroneous questions with additional 2,000 correct and erroneous answers sourced from augmented data based on GSM8K and MATH. Moreover, we also annotate error types for each question or answer, since it can assess whether models can correctly identify the error categories for future improvements. Finally, we present comprehensive evaluations using state-of-the-art (SOTA) models. Our results demonstrate that even strong models like GPT-o1 and DeepSeek-R1 perform poorly on this benchmark, highlighting the utility of MathClean. Our code and data is available at https://github.com/YuYingLi0/MathClean.
Weighted least-squares approximation with determinantal point processes and generalized volume sampling
We consider the problem of approximating a function from L^2 by an element of a given m-dimensional space V_m, associated with some feature map varphi, using evaluations of the function at random points x_1,dots,x_n. After recalling some results on optimal weighted least-squares using independent and identically distributed points, we consider weighted least-squares using projection determinantal point processes (DPP) or volume sampling. These distributions introduce dependence between the points that promotes diversity in the selected features varphi(x_i). We first provide a generalized version of volume-rescaled sampling yielding quasi-optimality results in expectation with a number of samples n = O(mlog(m)), that means that the expected L^2 error is bounded by a constant times the best approximation error in L^2. Also, further assuming that the function is in some normed vector space H continuously embedded in L^2, we further prove that the approximation is almost surely bounded by the best approximation error measured in the H-norm. This includes the cases of functions from L^infty or reproducing kernel Hilbert spaces. Finally, we present an alternative strategy consisting in using independent repetitions of projection DPP (or volume sampling), yielding similar error bounds as with i.i.d. or volume sampling, but in practice with a much lower number of samples. Numerical experiments illustrate the performance of the different strategies.
Floating-Point Multiply-Add with Approximate Normalization for Low-Cost Matrix Engines
The widespread adoption of machine learning algorithms necessitates hardware acceleration to ensure efficient performance. This acceleration relies on custom matrix engines that operate on full or reduced-precision floating-point arithmetic. However, conventional floating-point implementations can be power hungry. This paper proposes a method to improve the energy efficiency of the matrix engines used in machine learning algorithm acceleration. Our approach leverages approximate normalization within the floating-point multiply-add units as a means to reduce their hardware complexity, without sacrificing overall machine-learning model accuracy. Hardware synthesis results show that this technique reduces area and power consumption roughly by 16% and 13% on average for Bfloat16 format. Also, the error introduced in transformer model accuracy is 1% on average, for the most efficient configuration of the proposed approach.
FiniteFieldSolve: Exactly Solving Large Linear Systems in High-Energy Theory
Large linear systems play an important role in high-energy theory, appearing in amplitude bootstraps and during integral reduction. This paper introduces FiniteFieldSolve, a general-purpose toolkit for exactly solving large linear systems over the rationals. The solver interfaces directly with Mathematica, is straightforward to install, and seamlessly replaces Mathematica's native solvers. In testing, FiniteFieldSolve is approximately two orders of magnitude faster than Mathematica and uses an order of magnitude less memory. The package also compares favorably against other public solvers in FiniteFieldSolve's intended use cases. As the name of the package suggests, solutions are obtained via well-known finite field methods. These methods suffer from introducing an inordinate number of modulo (or integer division) operations with respect to different primes. By automatically recompiling itself for each prime, FiniteFieldSolve converts the division operations into much faster combinations of instructions, dramatically improving performance. The technique of compiling the prime can be applied to any finite field solver, where the time savings will be solver dependent. The operation of the package is illustrated through a detailed example of an amplitude bootstrap.
