- Beyond Stationarity: Convergence Analysis of Stochastic Softmax Policy Gradient Methods Markov Decision Processes (MDPs) are a formal framework for modeling and solving sequential decision-making problems. In finite-time horizons such problems are relevant for instance for optimal stopping or specific supply chain problems, but also in the training of large language models. In contrast to infinite horizon MDPs optimal policies are not stationary, policies must be learned for every single epoch. In practice all parameters are often trained simultaneously, ignoring the inherent structure suggested by dynamic programming. This paper introduces a combination of dynamic programming and policy gradient called dynamic policy gradient, where the parameters are trained backwards in time. For the tabular softmax parametrisation we carry out the convergence analysis for simultaneous and dynamic policy gradient towards global optima, both in the exact and sampled gradient settings without regularisation. It turns out that the use of dynamic policy gradient training much better exploits the structure of finite-time problems which is reflected in improved convergence bounds. 3 authors · Oct 4, 2023
28 MotionStream: Real-Time Video Generation with Interactive Motion Controls Current motion-conditioned video generation methods suffer from prohibitive latency (minutes per video) and non-causal processing that prevents real-time interaction. We present MotionStream, enabling sub-second latency with up to 29 FPS streaming generation on a single GPU. Our approach begins by augmenting a text-to-video model with motion control, which generates high-quality videos that adhere to the global text prompt and local motion guidance, but does not perform inference on the fly. As such, we distill this bidirectional teacher into a causal student through Self Forcing with Distribution Matching Distillation, enabling real-time streaming inference. Several key challenges arise when generating videos of long, potentially infinite time-horizons: (1) bridging the domain gap from training on finite length and extrapolating to infinite horizons, (2) sustaining high quality by preventing error accumulation, and (3) maintaining fast inference, without incurring growth in computational cost due to increasing context windows. A key to our approach is introducing carefully designed sliding-window causal attention, combined with attention sinks. By incorporating self-rollout with attention sinks and KV cache rolling during training, we properly simulate inference-time extrapolations with a fixed context window, enabling constant-speed generation of arbitrarily long videos. Our models achieve state-of-the-art results in motion following and video quality while being two orders of magnitude faster, uniquely enabling infinite-length streaming. With MotionStream, users can paint trajectories, control cameras, or transfer motion, and see results unfold in real-time, delivering a truly interactive experience. Adobe · Nov 3, 2025 6
- Bridging the Gap between Learning and Inference for Diffusion-Based Molecule Generation The efficacy of diffusion models in generating a spectrum of data modalities, including images, text, and videos, has spurred inquiries into their utility in molecular generation, yielding significant advancements in the field. However, the molecular generation process with diffusion models involves multiple autoregressive steps over a finite time horizon, leading to exposure bias issues inherently. To address the exposure bias issue, we propose a training framework named GapDiff. The core idea of GapDiff is to utilize model-predicted conformations as ground truth probabilistically during training, aiming to mitigate the data distributional disparity between training and inference, thereby enhancing the affinity of generated molecules. We conduct experiments using a 3D molecular generation model on the CrossDocked2020 dataset, and the vina energy and diversity demonstrate the potency of our framework with superior affinity. GapDiff is available at https://github.com/HUGHNew/gapdiff. 5 authors · Nov 8, 2024
- Kernel-Based Reinforcement Learning: A Finite-Time Analysis We consider the exploration-exploitation dilemma in finite-horizon reinforcement learning problems whose state-action space is endowed with a metric. We introduce Kernel-UCBVI, a model-based optimistic algorithm that leverages the smoothness of the MDP and a non-parametric kernel estimator of the rewards and transitions to efficiently balance exploration and exploitation. For problems with K episodes and horizon H, we provide a regret bound of Oleft( H^3 K^{2d{2d+1}}right), where d is the covering dimension of the joint state-action space. This is the first regret bound for kernel-based RL using smoothing kernels, which requires very weak assumptions on the MDP and has been previously applied to a wide range of tasks. We empirically validate our approach in continuous MDPs with sparse rewards. 5 authors · Apr 12, 2020
- Restarted Bayesian Online Change-point Detection for Non-Stationary Markov Decision Processes We consider the problem of learning in a non-stationary reinforcement learning (RL) environment, where the setting can be fully described by a piecewise stationary discrete-time Markov decision process (MDP). We introduce a variant of the Restarted Bayesian Online Change-Point Detection algorithm (R-BOCPD) that operates on input streams originating from the more general multinomial distribution and provides near-optimal theoretical guarantees in terms of false-alarm rate and detection delay. Based on this, we propose an improved version of the UCRL2 algorithm for MDPs with state transition kernel sampled from a multinomial distribution, which we call R-BOCPD-UCRL2. We perform a finite-time performance analysis and show that R-BOCPD-UCRL2 enjoys a favorable regret bound of Oleft(D O A T K_T logleft (frac{T{delta} right) + K_T log frac{K_T{delta}}{minlimits_ell : KLleft( {theta^{(ell+1)}}midmathbf{theta^{(ell)}}right)}}right), where D is the largest MDP diameter from the set of MDPs defining the piecewise stationary MDP setting, O is the finite number of states (constant over all changes), A is the finite number of actions (constant over all changes), K_T is the number of change points up to horizon T, and theta^{(ell)} is the transition kernel during the interval [c_ell, c_{ell+1}), which we assume to be multinomially distributed over the set of states O. Interestingly, the performance bound does not directly scale with the variation in MDP state transition distributions and rewards, ie. can also model abrupt changes. In practice, R-BOCPD-UCRL2 outperforms the state-of-the-art in a variety of scenarios in synthetic environments. We provide a detailed experimental setup along with a code repository (upon publication) that can be used to easily reproduce our experiments. 3 authors · Apr 1, 2023
- CARD: Channel Aligned Robust Blend Transformer for Time Series Forecasting Recent studies have demonstrated the great power of Transformer models for time series forecasting. One of the key elements that lead to the transformer's success is the channel-independent (CI) strategy to improve the training robustness. However, the ignorance of the correlation among different channels in CI would limit the model's forecasting capacity. In this work, we design a special Transformer, i.e., Channel Aligned Robust Blend Transformer (CARD for short), that addresses key shortcomings of CI type Transformer in time series forecasting. First, CARD introduces a channel-aligned attention structure that allows it to capture both temporal correlations among signals and dynamical dependence among multiple variables over time. Second, in order to efficiently utilize the multi-scale knowledge, we design a token blend module to generate tokens with different resolutions. Third, we introduce a robust loss function for time series forecasting to alleviate the potential overfitting issue. This new loss function weights the importance of forecasting over a finite horizon based on prediction uncertainties. Our evaluation of multiple long-term and short-term forecasting datasets demonstrates that CARD significantly outperforms state-of-the-art time series forecasting methods. The code is available at the following repository:https://github.com/wxie9/CARD 6 authors · May 20, 2023
- Chance-Constrained Gaussian Mixture Steering to a Terminal Gaussian Distribution We address the problem of finite-horizon control of a discrete-time linear system, where the initial state distribution follows a Gaussian mixture model, the terminal state must follow a specified Gaussian distribution, and the state and control inputs must obey chance constraints. We show that, throughout the time horizon, the state and control distributions are fully characterized by Gaussian mixtures. We then formulate the cost, distributional terminal constraint, and affine/2-norm chance constraints on the state and control, as convex functions of the decision variables. This is leveraged to formulate the chance-constrained path planning problem as a single convex optimization problem. A numerical example demonstrates the effectiveness of the proposed method. 2 authors · Mar 24, 2024