Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeTransfer Knowledge from Natural Language to Electrocardiography: Can We Detect Cardiovascular Disease Through Language Models?
Recent advancements in Large Language Models (LLMs) have drawn increasing attention since the learned embeddings pretrained on large-scale datasets have shown powerful ability in various downstream applications. However, whether the learned knowledge by LLMs can be transferred to clinical cardiology remains unknown. In this work, we aim to bridge this gap by transferring the knowledge of LLMs to clinical Electrocardiography (ECG). We propose an approach for cardiovascular disease diagnosis and automatic ECG diagnosis report generation. We also introduce an additional loss function by Optimal Transport (OT) to align the distribution between ECG and language embedding. The learned embeddings are evaluated on two downstream tasks: (1) automatic ECG diagnosis report generation, and (2) zero-shot cardiovascular disease detection. Our approach is able to generate high-quality cardiac diagnosis reports and also achieves competitive zero-shot classification performance even compared with supervised baselines, which proves the feasibility of transferring knowledge from LLMs to the cardiac domain.
DiagECG: An LLM-Driven Framework for Diagnostic Reasoning via Discretized ECG Tokenization
Electrocardiography plays a central role in cardiovascular diagnostics, yet existing automated approaches often struggle to generalize across clinical tasks and offer limited support for open-ended reasoning. We present DiagECG, a novel framework that integrates time-series and language modeling by enabling large language models to process 12-lead ECG signals for clinical text generation tasks. Our approach discretizes continuous ECG embeddings into symbolic tokens using a lead-independent encoder and quantization module. These tokens are then used to extend the vocabulary of LLM, allowing the model to handle both ECG and natural language inputs in a unified manner. To bridge the modality gap, we pretrain the model on an autoregressive ECG forecasting task, enabling the LLM to model temporal dynamics using its native language modeling capabilities. Finally, we perform instruction tuning on both ECG question answering and diagnostic report generation. Without modifying the core model, DiagECG achieves strong performance across tasks while maintaining generalization to out-of-distribution settings. Extensive experiments demonstrate the effectiveness of each component and highlight the potential of integrating symbolic ECG representations into LLMs for medical reasoning.
Q-Heart: ECG Question Answering via Knowledge-Informed Multimodal LLMs
Electrocardiography (ECG) offers critical cardiovascular insights, such as identifying arrhythmias and myocardial ischemia, but enabling automated systems to answer complex clinical questions directly from ECG signals (ECG-QA) remains a significant challenge. Current approaches often lack robust multimodal reasoning capabilities or rely on generic architectures ill-suited for the nuances of physiological signals. We introduce Q-Heart, a novel multimodal framework designed to bridge this gap. Q-Heart leverages a powerful, adapted ECG encoder and integrates its representations with textual information via a specialized ECG-aware transformer-based mapping layer. Furthermore, Q-Heart leverages dynamic prompting and retrieval of relevant historical clinical reports to guide tuning the language model toward knowledge-aware ECG reasoning. Extensive evaluations on the benchmark ECG-QA dataset show Q-Heart achieves state-of-the-art performance, outperforming existing methods by a 4% improvement in exact match accuracy. Our work demonstrates the effectiveness of combining domain-specific architectural adaptations with knowledge-augmented LLM instruction tuning for complex physiological ECG analysis, paving the way for more capable and potentially interpretable clinical patient care systems.
ECGNet: A generative adversarial network (GAN) approach to the synthesis of 12-lead ECG signals from single lead inputs
Electrocardiography (ECG) signal generation has been heavily explored using generative adversarial networks (GAN) because the implementation of 12-lead ECGs is not always feasible. The GAN models have achieved remarkable results in reproducing ECG signals but are only designed for multiple lead inputs and the features the GAN model preserves have not been identified-limiting the generated signals use in cardiovascular disease (CVD)-predictive models. This paper presents ECGNet which is a procedure that generates a complete set of 12-lead ECG signals from any single lead input using a GAN framework with a bidirectional long short-term memory (LSTM) generator and a convolutional neural network (CNN) discriminator. Cross and auto-correlation analysis performed on the generated signals identifies features conserved during the signal generation-i.e., features that can characterize the unique-nature of each signal and thus likely indicators of CVD. Finally, by using ECG signals annotated with the CVD-indicative features detailed by the correlation analysis as inputs for a CVD-onset-predictive CNN model, we overcome challenges preventing the prediction of multiple-CVD targets. Our models are experimented on 15s 12-lead ECG dataset recorded using MyoVista's wavECG. Functional outcome data for each patient is recorded and used in the CVD-predictive model. Our best GAN model achieves state-of-the-art accuracy with Frechet Distance (FD) scores of 4.73, 4.89, 5.18, 4.77, 4.71, and 5.55 on the V1-V6 pre-cordial leads respectively and shows strength in preserving the P-Q segments and R-peaks in the generated signals. To the best of our knowledge, ECGNet is the first to predict all of the remaining eleven leads from the input of any single lead.
Phase-shifted remote photoplethysmography for estimating heart rate and blood pressure from facial video
Human health can be critically affected by cardiovascular diseases, such as hypertension, arrhythmias, and stroke. Heart rate and blood pressure are important biometric information for the monitoring of cardiovascular system and early diagnosis of cardiovascular diseases. Existing methods for estimating the heart rate are based on electrocardiography and photoplethyomography, which require contacting the sensor to the skin surface. Moreover, catheter and cuff-based methods for measuring blood pressure cause inconvenience and have limited applicability. Therefore, in this thesis, we propose a vision-based method for estimating the heart rate and blood pressure. This thesis proposes a 2-stage deep learning framework consisting of a dual remote photoplethysmography network (DRP-Net) and bounded blood pressure network (BBP-Net). In the first stage, DRP-Net infers remote photoplethysmography (rPPG) signals for the acral and facial regions, and these phase-shifted rPPG signals are utilized to estimate the heart rate. In the second stage, BBP-Net integrates temporal features and analyzes phase discrepancy between the acral and facial rPPG signals to estimate SBP and DBP values. To improve the accuracy of estimating the heart rate, we employed a data augmentation method based on a frame interpolation model. Moreover, we designed BBP-Net to infer blood pressure within a predefined range by incorporating a scaled sigmoid function. Our method resulted in estimating the heart rate with the mean absolute error (MAE) of 1.78 BPM, reducing the MAE by 34.31 % compared to the recent method, on the MMSE-HR dataset. The MAE for estimating the systolic blood pressure (SBP) and diastolic blood pressure (DBP) were 10.19 mmHg and 7.09 mmHg. On the V4V dataset, the MAE for the heart rate, SBP, and DBP were 3.83 BPM, 13.64 mmHg, and 9.4 mmHg, respectively.
PPGFlowECG: Latent Rectified Flow with Cross-Modal Encoding for PPG-Guided ECG Generation and Cardiovascular Disease Detection
In clinical practice, electrocardiography (ECG) remains the gold standard for cardiac monitoring, providing crucial insights for diagnosing a wide range of cardiovascular diseases (CVDs). However, its reliance on specialized equipment and trained personnel limits feasibility for continuous routine monitoring. Photoplethysmography (PPG) offers accessible, continuous monitoring but lacks definitive electrophysiological information, preventing conclusive diagnosis. Generative models present a promising approach to translate PPG into clinically valuable ECG signals, yet current methods face substantial challenges, including the misalignment of physiological semantics in generative models and the complexity of modeling in high-dimensional signals. To this end, we propose PPGFlowECG, a two-stage framework that aligns PPG and ECG in a shared latent space via the CardioAlign Encoder and employs latent rectified flow to generate ECGs with high fidelity and interpretability. To the best of our knowledge, this is the first study to experiment on MCMED, a newly released clinical-grade dataset comprising over 10 million paired PPG-ECG samples from more than 118,000 emergency department visits with expert-labeled cardiovascular disease annotations. Results demonstrate the effectiveness of our method for PPG-to-ECG translation and cardiovascular disease detection. Moreover, cardiologist-led evaluations confirm that the synthesized ECGs achieve high fidelity and improve diagnostic reliability, underscoring our method's potential for real-world cardiovascular screening.
Interpretation of Intracardiac Electrograms Through Textual Representations
Understanding the irregular electrical activity of atrial fibrillation (AFib) has been a key challenge in electrocardiography. For serious cases of AFib, catheter ablations are performed to collect intracardiac electrograms (EGMs). EGMs offer intricately detailed and localized electrical activity of the heart and are an ideal modality for interpretable cardiac studies. Recent advancements in artificial intelligence (AI) has allowed some works to utilize deep learning frameworks to interpret EGMs during AFib. Additionally, language models (LMs) have shown exceptional performance in being able to generalize to unseen domains, especially in healthcare. In this study, we are the first to leverage pretrained LMs for finetuning of EGM interpolation and AFib classification via masked language modeling. We formulate the EGM as a textual sequence and present competitive performances on AFib classification compared against other representations. Lastly, we provide a comprehensive interpretability study to provide a multi-perspective intuition of the model's behavior, which could greatly benefit the clinical use.
Meta-Learning to Improve Pre-Training
Pre-training (PT) followed by fine-tuning (FT) is an effective method for training neural networks, and has led to significant performance improvements in many domains. PT can incorporate various design choices such as task and data reweighting strategies, augmentation policies, and noise models, all of which can significantly impact the quality of representations learned. The hyperparameters introduced by these strategies therefore must be tuned appropriately. However, setting the values of these hyperparameters is challenging. Most existing methods either struggle to scale to high dimensions, are too slow and memory-intensive, or cannot be directly applied to the two-stage PT and FT learning process. In this work, we propose an efficient, gradient-based algorithm to meta-learn PT hyperparameters. We formalize the PT hyperparameter optimization problem and propose a novel method to obtain PT hyperparameter gradients by combining implicit differentiation and backpropagation through unrolled optimization. We demonstrate that our method improves predictive performance on two real-world domains. First, we optimize high-dimensional task weighting hyperparameters for multitask pre-training on protein-protein interaction graphs and improve AUROC by up to 3.9%. Second, we optimize a data augmentation neural network for self-supervised PT with SimCLR on electrocardiography data and improve AUROC by up to 1.9%.
CE-SSL: Computation-Efficient Semi-Supervised Learning for ECG-based Cardiovascular Diseases Detection
The label scarcity problem is the main challenge that hinders the wide application of deep learning systems in automatic cardiovascular diseases (CVDs) detection using electrocardiography (ECG). Tuning pre-trained models alleviates this problem by transferring knowledge learned from large datasets to downstream small datasets. However, bottlenecks in computational efficiency and detection performance limit its clinical applications. It is difficult to improve the detection performance without significantly sacrificing the computational efficiency during model training. Here, we propose a computation-efficient semi-supervised learning paradigm (CE-SSL) for robust and computation-efficient CVDs detection using ECG. It enables a robust adaptation of pre-trained models on downstream datasets with limited supervision and high computational efficiency. First, a random-deactivation technique is developed to achieve robust and fast low-rank adaptation of pre-trained weights. Subsequently, we propose a one-shot rank allocation module to determine the optimal ranks for the update matrices of the pre-trained weights. Finally, a lightweight semi-supervised learning pipeline is introduced to enhance model performance by leveraging labeled and unlabeled data with high computational efficiency. Extensive experiments on four downstream datasets demonstrate that CE-SSL not only outperforms the state-of-the-art methods in multi-label CVDs detection but also consumes fewer GPU footprints, training time, and parameter storage space. As such, this paradigm provides an effective solution for achieving high computational efficiency and robust detection performance in the clinical applications of pre-trained models under limited supervision. Code and Supplementary Materials are available at https://github.com/KAZABANA/CE-SSL
