|
|
import os |
|
|
import json |
|
|
import logging |
|
|
from datasets import Dataset, load_dataset |
|
|
from typing import List, Dict, Set, Any, Tuple |
|
|
|
|
|
|
|
|
logging.basicConfig( |
|
|
level=logging.INFO, |
|
|
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s' |
|
|
) |
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
class DataLoader: |
|
|
"""data loader""" |
|
|
|
|
|
def __init__(self, dataset_path: str = 'dataset/longbench_pro.json', bon_num: int = 1, total_shards: int = 1, shard_id: int = 1, seed: int = 42) -> None: |
|
|
self.logger: logging.Logger = logging.getLogger(f"{__name__}.DataLoader") |
|
|
self.inference_dataset, self.inference_samples_num, self.evaluation_samples_num = self.load_dataset_with_bon_shard(dataset_path, bon_num, total_shards, shard_id, seed) |
|
|
|
|
|
def load_dataset_with_bon_shard(self, dataset_path: str, bon_num: int = 3, total_shards: int = 1, shard_id: int = 1, seed: int = 42) -> Tuple[List[Dict[str, Any]], int, int]: |
|
|
"""load dataset with bon and shard""" |
|
|
self.logger.info("Starting to load dataset") |
|
|
try: |
|
|
|
|
|
original_dataset: List[Dict[str, Any]] = json.load(open(dataset_path, 'r', encoding='utf-8')) |
|
|
|
|
|
bon_dataset: List[Dict[str, Any]] = [] |
|
|
|
|
|
for i in range(bon_num): |
|
|
for item in original_dataset: |
|
|
tmp_data = { |
|
|
"bon_idx": i + 1, |
|
|
"id": item["id"], |
|
|
"context": item["context"], |
|
|
"language": item["language"], |
|
|
"token_length": item["token_length"], |
|
|
"primary_task": item["primary_task"], |
|
|
"secondary_task": item["secondary_task"], |
|
|
"contextual_requirement": item["contextual_requirement"], |
|
|
"question_nonthinking": item["question_nonthinking"], |
|
|
"question_thinking": item["question_thinking"], |
|
|
"answer": item["answer"], |
|
|
"difficulty": item["difficulty"] |
|
|
} |
|
|
bon_dataset.append(tmp_data) |
|
|
|
|
|
shuffle_dataset: Dataset = Dataset.from_list(bon_dataset) |
|
|
shuffle_dataset = shuffle_dataset.shuffle(seed=seed) |
|
|
shard_dataset = shuffle_dataset.shard( |
|
|
num_shards=total_shards, index=shard_id - 1 |
|
|
) |
|
|
inference_dataset: List[Dict[str, Any]] = shard_dataset.to_list() |
|
|
inference_samples_num: int = len(inference_dataset) |
|
|
evaluation_samples_num: int = len(original_dataset) * bon_num |
|
|
self.logger.info("Dataset loaded successfully!") |
|
|
self.logger.info(f"Number of inference samples: [Original-{len(original_dataset)} * BoN-{bon_num} / Shard-{total_shards}] = {inference_samples_num}") |
|
|
self.logger.info(f"Number of evaluation samples: [Original-{len(original_dataset)} * BoN-{bon_num}] = {evaluation_samples_num}") |
|
|
except FileNotFoundError: |
|
|
self.logger.error(f"Dataset file not found: {dataset_path}") |
|
|
raise |
|
|
except json.JSONDecodeError as e: |
|
|
self.logger.error(f"Dataset file format error: {e}") |
|
|
raise |
|
|
except Exception as e: |
|
|
self.logger.error(f"Unknown error occurred while loading dataset: {e}") |
|
|
raise |
|
|
return inference_dataset, inference_samples_num, evaluation_samples_num |
|
|
|
|
|
def get_cached_data(self, output_file: str) -> Dict[str, Any]: |
|
|
"""get cached data id list""" |
|
|
has_data: Dict[str, Any] = {} |
|
|
if os.path.exists(output_file): |
|
|
self.logger.info(f"Found cached file: {output_file}") |
|
|
try: |
|
|
with open(output_file, encoding='utf-8') as f: |
|
|
line_count: int = 0 |
|
|
empty_prediction_count: int = 0 |
|
|
for line in f: |
|
|
line_count += 1 |
|
|
try: |
|
|
item: Dict[str, Any] = json.loads(line) |
|
|
|
|
|
if not item.get("prediction") or item.get("prediction").strip() == "" or item.get("prediction") is None: |
|
|
empty_prediction_count += 1 |
|
|
continue |
|
|
has_data[f"{item['id']}-{item['bon_idx']}"] = item |
|
|
except json.JSONDecodeError as e: |
|
|
self.logger.warning(f"Line {line_count} JSON format error, skipping: {e}") |
|
|
continue |
|
|
|
|
|
self.logger.info(f"Cached data processing completed - Total lines: {line_count}, Valid data: {len(has_data)}, Empty prediction: {empty_prediction_count}") |
|
|
except Exception as e: |
|
|
self.logger.error(f"Error occurred while reading cached file: {e}") |
|
|
raise |
|
|
else: |
|
|
self.logger.warning(f"Cached file does not exist: {output_file}") |
|
|
|
|
|
return has_data |
|
|
|
|
|
def save_has_data(self, has_data: Dict[str, Any], output_file: str) -> None: |
|
|
"""save has data to output_file""" |
|
|
try: |
|
|
backup_file: str = output_file + '.backup' |
|
|
if os.path.exists(output_file): |
|
|
os.rename(output_file, backup_file) |
|
|
self.logger.info(f"Backup file created: {backup_file}") |
|
|
else: |
|
|
self.logger.info(f"Output file does not exist, will create new file: {output_file}") |
|
|
|
|
|
with open(output_file, 'w', encoding='utf-8') as f: |
|
|
for item in has_data.values(): |
|
|
f.write(json.dumps(item, ensure_ascii=False) + '\n') |
|
|
self.logger.info(f"Valid data saved to: {output_file}, total {len(has_data)} items") |
|
|
except Exception as e: |
|
|
self.logger.error(f"Error occurred while saving data: {e}") |
|
|
raise |
|
|
|
|
|
def filter_new_data(self, output_file: str) -> List[Dict[str, Any]]: |
|
|
"""filter out unprocessed data and data with empty prediction""" |
|
|
self.logger.info("Starting to filter data that needs processing") |
|
|
has_data: Dict[str, Any] = self.get_cached_data(output_file) |
|
|
self.save_has_data(has_data, output_file) |
|
|
data: List[Dict[str, Any]] = [] |
|
|
for item in self.inference_dataset: |
|
|
if f"{item['id']}-{item['bon_idx']}" not in has_data: |
|
|
data.append(item) |
|
|
self.logger.info(f"Data filtering completed - Data to process: {len(data)} items") |
|
|
return data |
|
|
|
|
|
def split_data_for_multi_process(self, data: List[Dict[str, Any]], n_proc: int) -> List[List[Dict[str, Any]]]: |
|
|
"""split data for multi process""" |
|
|
data_subsets: List[List[Dict[str, Any]]] = [data[i::n_proc] for i in range(n_proc)] |
|
|
return data_subsets |
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
data_loader = DataLoader(dataset_path='/cpfs/user/chenziyang/LongBenchmark/eval/dataset/final/longbench_pro_1104.json', bon_num=3, total_shards=2, shard_id=2, seed=42) |
|
|
print(len(data_loader.inference_dataset)) |
|
|
print(data_loader.inference_dataset[100]["context_id"]) |
|
|
|
|
|
|