Create fine_tune_model.py
Browse files- fine_tune_model.py +47 -0
fine_tune_model.py
ADDED
|
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from datasets import load_dataset
|
| 2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments, Trainer
|
| 3 |
+
|
| 4 |
+
# Load custom dataset
|
| 5 |
+
dataset = load_dataset('json', data_files='path_to_your/shell_commands_mock_data.json')
|
| 6 |
+
|
| 7 |
+
# Load tokenizer and model for Repl.it LLM
|
| 8 |
+
model_name = "Repl.it/llama-2-13b"
|
| 9 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 10 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
| 11 |
+
|
| 12 |
+
# Tokenization function
|
| 13 |
+
def tokenize_function(examples):
|
| 14 |
+
return tokenizer(examples['prompt'], padding="max_length", truncation=True)
|
| 15 |
+
|
| 16 |
+
tokenized_datasets = dataset.map(tokenize_function, batched=True)
|
| 17 |
+
|
| 18 |
+
# Training arguments
|
| 19 |
+
training_args = TrainingArguments(
|
| 20 |
+
output_dir="./results",
|
| 21 |
+
evaluation_strategy="epoch",
|
| 22 |
+
learning_rate=2e-5,
|
| 23 |
+
per_device_train_batch_size=1,
|
| 24 |
+
per_device_eval_batch_size=1,
|
| 25 |
+
num_train_epochs=3,
|
| 26 |
+
weight_decay=0.01,
|
| 27 |
+
logging_dir="./logs",
|
| 28 |
+
logging_steps=10,
|
| 29 |
+
save_steps=100,
|
| 30 |
+
)
|
| 31 |
+
|
| 32 |
+
# Trainer setup
|
| 33 |
+
trainer = Trainer(
|
| 34 |
+
model=model,
|
| 35 |
+
args=training_args,
|
| 36 |
+
train_dataset=tokenized_datasets['train'],
|
| 37 |
+
eval_dataset=tokenized_datasets['test'] if 'test' in tokenized_datasets else None,
|
| 38 |
+
)
|
| 39 |
+
|
| 40 |
+
# Start training
|
| 41 |
+
trainer.train()
|
| 42 |
+
|
| 43 |
+
# Save fine-tuned model
|
| 44 |
+
trainer.save_model("./fine_tuned_model")
|
| 45 |
+
|
| 46 |
+
# Evaluate the model
|
| 47 |
+
trainer.evaluate()
|